A Vehicle Haptic Steering by Wire System Based on High Gain GPI Observers
A vehicle steering by wire (SBW) haptic system based on high gain generalized proportional integral (GPI) observers is introduced. The observers are considered for the estimation of dynamic perturbations that are present at the tire and steering wheel. To ensure efficient tracking between the comma...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2014/981276 |
Summary: | A vehicle steering by wire (SBW) haptic system based on high gain generalized proportional integral (GPI) observers is introduced. The observers are considered for the estimation of dynamic perturbations that are present at the tire and steering wheel. To ensure efficient tracking between the commanded steering wheel angle and the tire orientation angle, the estimated perturbations are on line canceled. As to provide a haptic interface with the driver, the estimated dynamic effects at the steering rack are fed back to the steering wheel, yielding a master-slave haptic system with bilateral communication. For implementation purposes few sensors and minimum knowledge of the dynamic model are required, which is a major advantage compared to other approaches. Only position tracking errors are fed back, while all other signals are estimated by the high gain GPI observers. The scheme is robust to uncertainty on the input gain and cancels dynamic perturbation effects such as friction and aligning forces on the tire. Experimental results are presented on a prototype platform. |
---|---|
ISSN: | 1024-123X 1563-5147 |