Estimating Bus Loads and OD Flows Using Location-Stamped Farebox and Wi-Fi Signal Data
Electronic fareboxes integrated with Automatic Vehicle Location (AVL) systems can provide location-stamped records to infer passenger boarding at individual stops. However, bus loads and Origin-Destination (OD) flows, which are useful for route planning, design, and real-time controls, cannot be der...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2017-01-01
|
Series: | Journal of Advanced Transportation |
Online Access: | http://dx.doi.org/10.1155/2017/6374858 |
Summary: | Electronic fareboxes integrated with Automatic Vehicle Location (AVL) systems can provide location-stamped records to infer passenger boarding at individual stops. However, bus loads and Origin-Destination (OD) flows, which are useful for route planning, design, and real-time controls, cannot be derived directly from farebox data. Recently, Wi-Fi sensors have been used to collect passenger OD flow information. But the data are insufficient to capture the variation of passenger demand across bus trips. In this study, we propose a hierarchical Bayesian model to estimate trip-level OD flow matrices and a period-level OD flow matrix using sampled OD flow data collected by Wi-Fi sensors and boarding data provided by fareboxes. Bus loads on each bus trip are derived directly from the estimated trip-level OD flow matrices. The proposed method is evaluated empirically on an operational bus route and the results demonstrate that it provides good and detailed transit route-level passenger demand information by combining farebox and Wi-Fi signal data. |
---|---|
ISSN: | 0197-6729 2042-3195 |