Time dependent variational principle for tree Tensor Networks

We present a generalization of the Time Dependent Variational Principle (TDVP) to any finite sized loop-free tensor network. The major advantage of TDVP is that it can be employed as long as a representation of the Hamiltonian in the same tensor network structure that encodes the state is availab...

Full description

Bibliographic Details
Main Author: Daniel Bauernfeind, Markus Aichhorn
Format: Article
Language:English
Published: SciPost 2020-02-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.8.2.024
Description
Summary:We present a generalization of the Time Dependent Variational Principle (TDVP) to any finite sized loop-free tensor network. The major advantage of TDVP is that it can be employed as long as a representation of the Hamiltonian in the same tensor network structure that encodes the state is available. Often, such a representation can be found also for long-range terms in the Hamiltonian. As an application we use TDVP for the Fork Tensor Product States tensor network for multi-orbital Anderson impurity models. We demonstrate that TDVP allows to account for off-diagonal hybridizations in the bath which are relevant when spin-orbit coupling effects are important, or when distortions of the crystal lattice are present.
ISSN:2542-4653