Existence of solutions for non-uniformly nonlinear elliptic systems
Using a variational approach, we prove the existence of solutions for the degenerate quasilinear elliptic system $$displaylines{ -hbox{div}(u_1 (x)|abla u|^{p-2} abla u) =lambda F_u(x,u,v)+mu G_u(x,u,v),cr -hbox{div}(u_2 (x)|abla v|^{q-2} abla v) =lambda F_v(x,u,v)+mu G_v(x,u,v), }$$ with Di...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2011-12-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2011/167/abstr.html |
id |
doaj-1e0e74941d934db597a026b752a5144e |
---|---|
record_format |
Article |
spelling |
doaj-1e0e74941d934db597a026b752a5144e2020-11-24T23:09:02ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912011-12-012011167,19Existence of solutions for non-uniformly nonlinear elliptic systemsGhasem Alizadeh AfrouziSomayeh MahdaviNikolaos B. ZographopoulosUsing a variational approach, we prove the existence of solutions for the degenerate quasilinear elliptic system $$displaylines{ -hbox{div}(u_1 (x)|abla u|^{p-2} abla u) =lambda F_u(x,u,v)+mu G_u(x,u,v),cr -hbox{div}(u_2 (x)|abla v|^{q-2} abla v) =lambda F_v(x,u,v)+mu G_v(x,u,v), }$$ with Dirichlet boundary conditions. http://ejde.math.txstate.edu/Volumes/2011/167/abstr.htmlNon-uniformly elliptic systemmountain pass theoremminimum principle |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ghasem Alizadeh Afrouzi Somayeh Mahdavi Nikolaos B. Zographopoulos |
spellingShingle |
Ghasem Alizadeh Afrouzi Somayeh Mahdavi Nikolaos B. Zographopoulos Existence of solutions for non-uniformly nonlinear elliptic systems Electronic Journal of Differential Equations Non-uniformly elliptic system mountain pass theorem minimum principle |
author_facet |
Ghasem Alizadeh Afrouzi Somayeh Mahdavi Nikolaos B. Zographopoulos |
author_sort |
Ghasem Alizadeh Afrouzi |
title |
Existence of solutions for non-uniformly nonlinear elliptic systems |
title_short |
Existence of solutions for non-uniformly nonlinear elliptic systems |
title_full |
Existence of solutions for non-uniformly nonlinear elliptic systems |
title_fullStr |
Existence of solutions for non-uniformly nonlinear elliptic systems |
title_full_unstemmed |
Existence of solutions for non-uniformly nonlinear elliptic systems |
title_sort |
existence of solutions for non-uniformly nonlinear elliptic systems |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2011-12-01 |
description |
Using a variational approach, we prove the existence of solutions for the degenerate quasilinear elliptic system $$displaylines{ -hbox{div}(u_1 (x)|abla u|^{p-2} abla u) =lambda F_u(x,u,v)+mu G_u(x,u,v),cr -hbox{div}(u_2 (x)|abla v|^{q-2} abla v) =lambda F_v(x,u,v)+mu G_v(x,u,v), }$$ with Dirichlet boundary conditions. |
topic |
Non-uniformly elliptic system mountain pass theorem minimum principle |
url |
http://ejde.math.txstate.edu/Volumes/2011/167/abstr.html |
work_keys_str_mv |
AT ghasemalizadehafrouzi existenceofsolutionsfornonuniformlynonlinearellipticsystems AT somayehmahdavi existenceofsolutionsfornonuniformlynonlinearellipticsystems AT nikolaosbzographopoulos existenceofsolutionsfornonuniformlynonlinearellipticsystems |
_version_ |
1725611856572186624 |