Summary: | In order to understand the non-isothermal transformation behavior of Ti-6Al-4V titanium alloy in the continuous heating stage of solution treatment, thermal dilatometry tests with heating rates of 0.1~0.8 °C/s were designed. The conversion between the expansion amount and the transformed volume fraction was realized by the lever principle, and the transformation characteristics of α + β → β were quantified based on the Kissinger-Akahira-Sunose (KAS) theory and the modified Johnson−Mehl−Avrami (JMA) model. The results show that the phase transformation kinetics curves present typical “S” patterns, and the element diffusion transformation controls the nucleation and growth of new grains during the transformation of α + β → β. The phase transformation interval gradually moves to high temperature regions with the increase of heating rates, and the phase transformation activation energy is 445.5 kJ·mol<sup>−1</sup>. The phase transformation process is divided into three stages according to the relationship between the Avrami exponent <i>n</i> and the transformed volume fraction <i>f</i><sub>T</sub>. These three stages correspond to different stages of grain nucleation or growth.
|