Direct atomistic simulations of metastable state destruction in titanium (β-α martensitic transition) caused by external influences

Large-scale classical molecular dynamics (CMD) is utilized to simulate the β→α phase transition in pure titanium. Samples with a metastable polycrystalline bcc structure are prepared using crystallization from liquid state and subsequent recrystallization at elevated temperatures. Controlling the he...

Full description

Bibliographic Details
Main Authors: Chirkov Pavel V., Kichigin Roman M., Karavaev Alexey V., Dremov Vladimir V.
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2021/04/epjconf_dymat2021_02011.pdf
Description
Summary:Large-scale classical molecular dynamics (CMD) is utilized to simulate the β→α phase transition in pure titanium. Samples with a metastable polycrystalline bcc structure are prepared using crystallization from liquid state and subsequent recrystallization at elevated temperatures. Controlling the heating-cooling regimes we prepared two different kinds of samples with coarse and fine grain structures. The metastable bcc samples were relaxed at temperatures noticeably lower than the equilibrium β-α transition temperature. During the following cooling of the samples down to room temperature, transitions to the α phase start. With the prepared metastable bcc samples of two kinds we perform the CMD study of the β→α transition under plain shock wave loading and imposed shear deformations. From the CMD simulations we obtain information about the transformation barriers, mechanisms, and kinetics. Results of CMD simulations suggest that grain boundaries hamper the hcp phase growth.
ISSN:2100-014X