Periodic Intermediate <i>β</i>-Expansions of Pisot Numbers

The subshift of finite type property (also known as the Markov property) is ubiquitous in dynamical systems and the simplest and most widely studied class of dynamical systems are <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics&g...

Full description

Bibliographic Details
Main Authors: Blaine Quackenbush, Tony Samuel, Matt West
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/6/903
Description
Summary:The subshift of finite type property (also known as the Markov property) is ubiquitous in dynamical systems and the simplest and most widely studied class of dynamical systems are <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula>-shifts, namely transformations of the form <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>β</mi> <mo>,</mo> <mi>α</mi> </mrow> </msub> <mo lspace="0pt">:</mo> <mi>x</mi> <mo>↦</mo> <mi>β</mi> <mi>x</mi> <mo>+</mo> <mi>α</mi> <mspace width="0.277778em"></mspace> <mo form="prefix">mod</mo> <mspace width="0.277778em"></mspace> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> acting on <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">[</mo> <mo>−</mo> <mi>α</mi> <mo>/</mo> <mo stretchy="false">(</mo> <mi>β</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−</mo> <mi>α</mi> <mo stretchy="false">)</mo> <mo>/</mo> <mo stretchy="false">(</mo> <mi>β</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>β</mi> <mo>,</mo> <mi>α</mi> <mo stretchy="false">)</mo> <mo>∈</mo> <mo>Δ</mo> </mrow> </semantics> </math> </inline-formula> is fixed and where <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mo>≔</mo> <mo>{</mo> <mrow> <mo stretchy="false">(</mo> <mi>β</mi> <mo>,</mo> <mi>α</mi> <mo stretchy="false">)</mo> </mrow> <mo>∈</mo> <msup> <mi mathvariant="double-struck">R</mi> <mn>2</mn> </msup> <mo lspace="0pt">:</mo> <mi>β</mi> <mo>∈</mo> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mspace width="0.277778em"></mspace> <mi>and</mi> <mspace width="0.277778em"></mspace> <mn>0</mn> <mo>≤</mo> <mi>α</mi> <mo>≤</mo> <mn>2</mn> <mo>−</mo> <mi>β</mi> <mo>}</mo> </mrow> </semantics> </math> </inline-formula>. Recently, it was shown, by Li et al. (Proc. Amer. Math. Soc. 147(5): 2045–2055, 2019), that the set of <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>β</mi> <mo>,</mo> <mi>α</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> such that <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mrow> <mi>β</mi> <mo>,</mo> <mi>α</mi> </mrow> </msub> </semantics> </math> </inline-formula> has the subshift of finite type property is dense in the parameter space <inline-formula> <math display="inline"> <semantics> <mo>Δ</mo> </semantics> </math> </inline-formula>. Here, they proposed the following question. Given a fixed <inline-formula> <math display="inline"> <semantics> <mrow> <mi>β</mi> <mo>∈</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> which is the <i>n</i>-th root of a Perron number, does there exists a dense set of <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula> in the fiber <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mi>β</mi> <mo>}</mo> <mo>×</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>−</mo> <mi>β</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, so that <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mrow> <mi>β</mi> <mo>,</mo> <mi>α</mi> </mrow> </msub> </semantics> </math> </inline-formula> has the subshift of finite type property? We answer this question in the positive for a class of Pisot numbers. Further, we investigate if this question holds true when replacing the subshift of finite type property by the sofic property (that is a factor of a subshift of finite type). In doing so we generalise, a classical result of Schmidt (Bull. London Math. Soc., 12(4): 269–278, 1980) from the case when <inline-formula> <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> to the case when <inline-formula> <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>∈</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>−</mo> <mi>β</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>. That is, we examine the structure of the set of eventually periodic points of <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mrow> <mi>β</mi> <mo>,</mo> <mi>α</mi> </mrow> </msub> </semantics> </math> </inline-formula> when <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula> is a Pisot number and when <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula> is the <i>n</i>-th root of a Pisot number.
ISSN:2227-7390