Chemical technology of cellular glass production

Cellular glass by its composition, structure and technical parameters is a high-performance multifunctional material, and its use in construction and engineering is extremely important. The problem of developing cellular glass power consumption technology on the base of natural amorphous aluminosili...

Full description

Bibliographic Details
Main Authors: Saakyan Emma, Arzumanyan Artavazd, Galstyan Gagik
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2019/23/e3sconf_form2018_02012.pdf
Description
Summary:Cellular glass by its composition, structure and technical parameters is a high-performance multifunctional material, and its use in construction and engineering is extremely important. The problem of developing cellular glass power consumption technology on the base of natural amorphous aluminosilicates and silica rocks in a single technological process, combining the synthesis of a given glass composition and the formation of its cellular structure is solved by introduction of a nanodispersed modifier into the rock and by the mechanical activation of the charge, creating an impact possibility in the system at the atomic-molecular level. With the involvement of a complex modern theoretical and experimental methods, the processes of glass wool rock modifyed sintering and expanding were investigated, which served as a base for creating the cellular glass technology in the form of products and granules. The study of the secondary glass synthesis dynamics during sintering of volcanic glasses with sodium hydroxide solution showed that the hydrated amorphous neoplasms of sodium silicates synthesized at low temperatures and silica aluminosilicates with temperature rise gradually enriched with silica and formed hydrated secondary glasses, the dehydration of which expanded the mass upon reaching the pyroplastic state. Power consumption technologies of the new type cellular glasses based on the volcanic glass-wool and other amorphous silicate rocks, which allow to combine the processes of synthesis of low-melting glass and its expansion by sintering are challenging for the production and for application in construction and engineering.
ISSN:2267-1242