Neutron spin echo spectroscopy under 17 T magnetic field at RESEDA

We report proof-of-principle measurements at the neutron resonance spin echo spectrometer RESEDA (MLZ) under large magnetic fields by means of Modulation of IntEnsity with Zero Effort (MIEZE). Our study demonstrates the feasibility of applying strong magnetic fields up to 17 T at the sample while m...

Full description

Bibliographic Details
Main Authors: Kindervater J., Martin N., Häußler W., Krautloher M., Fuchs C., Mühlbauer S., Lim J.A., Blackburn E., Böni P., Pfleiderer C.
Format: Article
Language:English
Published: EDP Sciences 2015-01-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/20158303008
id doaj-1d9cc17a1ecb4f36bb2606c2299147b9
record_format Article
spelling doaj-1d9cc17a1ecb4f36bb2606c2299147b92021-08-02T01:56:56ZengEDP SciencesEPJ Web of Conferences2100-014X2015-01-01830300810.1051/epjconf/20158303008epjconf-Qens-Wins2014_03008Neutron spin echo spectroscopy under 17 T magnetic field at RESEDAKindervater J.0Martin N.Häußler W.Krautloher M.Fuchs C.1Mühlbauer S.2Lim J.A.Blackburn E.3Böni P.4Pfleiderer C.5Physik-Department, Technische Universität MünchenHeinz Maier-Leibnitz Zentrum (MLZ), Technische Universität MünchenHeinz Maier-Leibnitz Zentrum (MLZ), Technische Universität MünchenSchool of Physics and Astronomy, University of BirminghamPhysik-Department, Technische Universität MünchenPhysik-Department, Technische Universität München We report proof-of-principle measurements at the neutron resonance spin echo spectrometer RESEDA (MLZ) under large magnetic fields by means of Modulation of IntEnsity with Zero Effort (MIEZE). Our study demonstrates the feasibility of applying strong magnetic fields up to 17 T at the sample while maintaining unchanged sub-μeV resolution. We find that the MIEZE-spin-echo resolution curve remains essentially unchanged as a function of magnetic field up to the highest fields available, promising access to high fields without need for additional fine-tuning of the instrument. This sets the stage for the experimental investigations of subtle field dependent phenomena, such as magnetic field-driven phase transitions in hard and soft condensed matter physics. http://dx.doi.org/10.1051/epjconf/20158303008
collection DOAJ
language English
format Article
sources DOAJ
author Kindervater J.
Martin N.
Häußler W.
Krautloher M.
Fuchs C.
Mühlbauer S.
Lim J.A.
Blackburn E.
Böni P.
Pfleiderer C.
spellingShingle Kindervater J.
Martin N.
Häußler W.
Krautloher M.
Fuchs C.
Mühlbauer S.
Lim J.A.
Blackburn E.
Böni P.
Pfleiderer C.
Neutron spin echo spectroscopy under 17 T magnetic field at RESEDA
EPJ Web of Conferences
author_facet Kindervater J.
Martin N.
Häußler W.
Krautloher M.
Fuchs C.
Mühlbauer S.
Lim J.A.
Blackburn E.
Böni P.
Pfleiderer C.
author_sort Kindervater J.
title Neutron spin echo spectroscopy under 17 T magnetic field at RESEDA
title_short Neutron spin echo spectroscopy under 17 T magnetic field at RESEDA
title_full Neutron spin echo spectroscopy under 17 T magnetic field at RESEDA
title_fullStr Neutron spin echo spectroscopy under 17 T magnetic field at RESEDA
title_full_unstemmed Neutron spin echo spectroscopy under 17 T magnetic field at RESEDA
title_sort neutron spin echo spectroscopy under 17 t magnetic field at reseda
publisher EDP Sciences
series EPJ Web of Conferences
issn 2100-014X
publishDate 2015-01-01
description We report proof-of-principle measurements at the neutron resonance spin echo spectrometer RESEDA (MLZ) under large magnetic fields by means of Modulation of IntEnsity with Zero Effort (MIEZE). Our study demonstrates the feasibility of applying strong magnetic fields up to 17 T at the sample while maintaining unchanged sub-μeV resolution. We find that the MIEZE-spin-echo resolution curve remains essentially unchanged as a function of magnetic field up to the highest fields available, promising access to high fields without need for additional fine-tuning of the instrument. This sets the stage for the experimental investigations of subtle field dependent phenomena, such as magnetic field-driven phase transitions in hard and soft condensed matter physics.
url http://dx.doi.org/10.1051/epjconf/20158303008
work_keys_str_mv AT kindervaterj neutronspinechospectroscopyunder17tmagneticfieldatreseda
AT martinn neutronspinechospectroscopyunder17tmagneticfieldatreseda
AT haußlerw neutronspinechospectroscopyunder17tmagneticfieldatreseda
AT krautloherm neutronspinechospectroscopyunder17tmagneticfieldatreseda
AT fuchsc neutronspinechospectroscopyunder17tmagneticfieldatreseda
AT muhlbauers neutronspinechospectroscopyunder17tmagneticfieldatreseda
AT limja neutronspinechospectroscopyunder17tmagneticfieldatreseda
AT blackburne neutronspinechospectroscopyunder17tmagneticfieldatreseda
AT bonip neutronspinechospectroscopyunder17tmagneticfieldatreseda
AT pfleidererc neutronspinechospectroscopyunder17tmagneticfieldatreseda
_version_ 1721244238239236096