Summary: | Abstract We investigate the generation of ultraviolet (UV) second-harmonic radiation at the boundary of a UV transparent crystal, which is derived from the automatic partial phase matching of the incident wave and the total internal reflection. By adhering to another UV non-transparent crystal with a larger second-order nonlinear coefficient χ (2), a nonlinear interface with large disparity in χ (2) is formed and the enhancement of UV second-harmonic radiation is observed experimentally. The intensity of enhanced second harmonic wave generated at the nonlinear interface is up to 11.6 times that at the crystal boundary. As a tunable phase-matching method, it may suggest potential applications in the UV, and even vacuum-UV region.
|