Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde

We report the results of the geochemical monitoring of the fumarolic discharges at the Pico do Fogo volcano in Cape Verde from 2007 to 2016. During this period Pico do Fogo experienced a volcanic eruption (November 23, 2014) that lasted 77 days, from a new vent ∼2.5 km from the fumaroles. Two fumaro...

Full description

Bibliographic Details
Main Authors: Gladys V. Melián, Pedro A. Hernández, Nemesio M. Pérez, María Asensio-Ramos, Eleazar Padrón, Mar Alonso, Germán D. Padilla, José Barrancos, Francesco Sortino, Hirochicka Sumino, Fátima Rodríguez, Cecilia Amonte, Sonia Silva, Nadir Cardoso, José M. Pereira
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-07-01
Series:Frontiers in Earth Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/feart.2021.631190/full
id doaj-1d8f54ddc876479da647ead99df3dc62
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Gladys V. Melián
Gladys V. Melián
Gladys V. Melián
Pedro A. Hernández
Pedro A. Hernández
Pedro A. Hernández
Nemesio M. Pérez
Nemesio M. Pérez
Nemesio M. Pérez
María Asensio-Ramos
Eleazar Padrón
Eleazar Padrón
Eleazar Padrón
Mar Alonso
Mar Alonso
Germán D. Padilla
Germán D. Padilla
José Barrancos
José Barrancos
Francesco Sortino
Hirochicka Sumino
Fátima Rodríguez
Cecilia Amonte
Sonia Silva
Nadir Cardoso
José M. Pereira
spellingShingle Gladys V. Melián
Gladys V. Melián
Gladys V. Melián
Pedro A. Hernández
Pedro A. Hernández
Pedro A. Hernández
Nemesio M. Pérez
Nemesio M. Pérez
Nemesio M. Pérez
María Asensio-Ramos
Eleazar Padrón
Eleazar Padrón
Eleazar Padrón
Mar Alonso
Mar Alonso
Germán D. Padilla
Germán D. Padilla
José Barrancos
José Barrancos
Francesco Sortino
Hirochicka Sumino
Fátima Rodríguez
Cecilia Amonte
Sonia Silva
Nadir Cardoso
José M. Pereira
Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde
Frontiers in Earth Science
geochemistry
volcanic gases
fumarolic emission
precursory signals
Pico do Fogo volcano
author_facet Gladys V. Melián
Gladys V. Melián
Gladys V. Melián
Pedro A. Hernández
Pedro A. Hernández
Pedro A. Hernández
Nemesio M. Pérez
Nemesio M. Pérez
Nemesio M. Pérez
María Asensio-Ramos
Eleazar Padrón
Eleazar Padrón
Eleazar Padrón
Mar Alonso
Mar Alonso
Germán D. Padilla
Germán D. Padilla
José Barrancos
José Barrancos
Francesco Sortino
Hirochicka Sumino
Fátima Rodríguez
Cecilia Amonte
Sonia Silva
Nadir Cardoso
José M. Pereira
author_sort Gladys V. Melián
title Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde
title_short Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde
title_full Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde
title_fullStr Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde
title_full_unstemmed Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde
title_sort insights from fumarole gas geochemistry on the recent volcanic unrest of pico do fogo, cape verde
publisher Frontiers Media S.A.
series Frontiers in Earth Science
issn 2296-6463
publishDate 2021-07-01
description We report the results of the geochemical monitoring of the fumarolic discharges at the Pico do Fogo volcano in Cape Verde from 2007 to 2016. During this period Pico do Fogo experienced a volcanic eruption (November 23, 2014) that lasted 77 days, from a new vent ∼2.5 km from the fumaroles. Two fumaroles were sampled, a low (F1∼100°C) and a medium (F2∼300°C) temperature. The variations observed in the δ18O and δ2H in F1 and F2 suggest different fluid source contributions and/or fractionation processes. Although no significant changes were observed in the outlet fumarole temperatures, two clear increases were observed in the vapor fraction of fumarolic discharges during the periods November 2008–2010 and 2013–2014. Also, two sharp peaks were observed in CO2/CH4 ratios at both fumaroles, in November 2008 and November 2013. This confirms that gases with a strong magmatic component rose towards the surface within the Pico do Fogo system during 2008 and 2013. Further, F2 showed two CO2/Stotal peaks, the first in late 2010 and the second after eruption onset, suggesting the occurrence of magmatic pulses into the volcanic system. Time series of He/CO2, H2/CO2 and CO/CO2 ratios are low in 2008–2009, and high in 2013–2014 period, supporting the hypothesis of fluid input from a deeper magmatic source. Regarding to the isotopic composition, increases in air-corrected 3He/4He ratios are observed in both fumaroles; F1 showed a peak in 2010 from a minimum in 2009 during the first magmatic reactivation onset and another in late 2013, while F2 displayed a slower rise to its maximum in late 2013. The suite of geochemical species analyzed have considerably different reactivities, hence these integrated geochemical time-series can be used to detect the timing of magmatic arrivals to the base of the system, and importantly, indicate the typical time lags between gas release periods at depth and their arrival at the surface. The high 3He/4He ratios in both fumaroles in the range observed for mid-ocean ridge basalts, indicating that He is predominantly of upper mantle origin. This work supports that monitoring of the chemical and isotopic composition of the fumaroles of the Pico do Fogo volcano is a very important tool to understand the processes that take place in the magmatic-hydrothermal system and to be able to predict future episodes of volcanic unrest and to mitigate volcanic risk.
topic geochemistry
volcanic gases
fumarolic emission
precursory signals
Pico do Fogo volcano
url https://www.frontiersin.org/articles/10.3389/feart.2021.631190/full
work_keys_str_mv AT gladysvmelian insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT gladysvmelian insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT gladysvmelian insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT pedroahernandez insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT pedroahernandez insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT pedroahernandez insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT nemesiomperez insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT nemesiomperez insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT nemesiomperez insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT mariaasensioramos insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT eleazarpadron insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT eleazarpadron insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT eleazarpadron insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT maralonso insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT maralonso insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT germandpadilla insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT germandpadilla insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT josebarrancos insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT josebarrancos insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT francescosortino insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT hirochickasumino insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT fatimarodriguez insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT ceciliaamonte insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT soniasilva insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT nadircardoso insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
AT josempereira insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde
_version_ 1721301503046582272
spelling doaj-1d8f54ddc876479da647ead99df3dc622021-07-15T08:48:42ZengFrontiers Media S.A.Frontiers in Earth Science2296-64632021-07-01910.3389/feart.2021.631190631190Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape VerdeGladys V. Melián0Gladys V. Melián1Gladys V. Melián2Pedro A. Hernández3Pedro A. Hernández4Pedro A. Hernández5Nemesio M. Pérez6Nemesio M. Pérez7Nemesio M. Pérez8María Asensio-Ramos9Eleazar Padrón10Eleazar Padrón11Eleazar Padrón12Mar Alonso13Mar Alonso14Germán D. Padilla15Germán D. Padilla16José Barrancos17José Barrancos18Francesco Sortino19Hirochicka Sumino20Fátima Rodríguez21Cecilia Amonte22Sonia Silva23Nadir Cardoso24José M. Pereira25Instituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, SpainAgencia Insular de la Energía de Tenerife (AIET), Granadilla de Abona, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, SpainAgencia Insular de la Energía de Tenerife (AIET), Granadilla de Abona, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, SpainAgencia Insular de la Energía de Tenerife (AIET), Granadilla de Abona, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, SpainAgencia Insular de la Energía de Tenerife (AIET), Granadilla de Abona, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, SpainIstituto Nazionale di Geofisica e Vulcanologia - Sezione Roma 2, Roma, ItalyDepartment of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, JapanInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainUniversidade de Cabo Verde (UNICV), Praia, Cape VerdeUniversidade de Cabo Verde (UNICV), Praia, Cape VerdeLaboratório de Engenharia Civil of Cape Verde (LEC) Tira - Chapéu, Praia, Cape VerdeWe report the results of the geochemical monitoring of the fumarolic discharges at the Pico do Fogo volcano in Cape Verde from 2007 to 2016. During this period Pico do Fogo experienced a volcanic eruption (November 23, 2014) that lasted 77 days, from a new vent ∼2.5 km from the fumaroles. Two fumaroles were sampled, a low (F1∼100°C) and a medium (F2∼300°C) temperature. The variations observed in the δ18O and δ2H in F1 and F2 suggest different fluid source contributions and/or fractionation processes. Although no significant changes were observed in the outlet fumarole temperatures, two clear increases were observed in the vapor fraction of fumarolic discharges during the periods November 2008–2010 and 2013–2014. Also, two sharp peaks were observed in CO2/CH4 ratios at both fumaroles, in November 2008 and November 2013. This confirms that gases with a strong magmatic component rose towards the surface within the Pico do Fogo system during 2008 and 2013. Further, F2 showed two CO2/Stotal peaks, the first in late 2010 and the second after eruption onset, suggesting the occurrence of magmatic pulses into the volcanic system. Time series of He/CO2, H2/CO2 and CO/CO2 ratios are low in 2008–2009, and high in 2013–2014 period, supporting the hypothesis of fluid input from a deeper magmatic source. Regarding to the isotopic composition, increases in air-corrected 3He/4He ratios are observed in both fumaroles; F1 showed a peak in 2010 from a minimum in 2009 during the first magmatic reactivation onset and another in late 2013, while F2 displayed a slower rise to its maximum in late 2013. The suite of geochemical species analyzed have considerably different reactivities, hence these integrated geochemical time-series can be used to detect the timing of magmatic arrivals to the base of the system, and importantly, indicate the typical time lags between gas release periods at depth and their arrival at the surface. The high 3He/4He ratios in both fumaroles in the range observed for mid-ocean ridge basalts, indicating that He is predominantly of upper mantle origin. This work supports that monitoring of the chemical and isotopic composition of the fumaroles of the Pico do Fogo volcano is a very important tool to understand the processes that take place in the magmatic-hydrothermal system and to be able to predict future episodes of volcanic unrest and to mitigate volcanic risk.https://www.frontiersin.org/articles/10.3389/feart.2021.631190/fullgeochemistryvolcanic gasesfumarolic emissionprecursory signalsPico do Fogo volcano