Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde
We report the results of the geochemical monitoring of the fumarolic discharges at the Pico do Fogo volcano in Cape Verde from 2007 to 2016. During this period Pico do Fogo experienced a volcanic eruption (November 23, 2014) that lasted 77 days, from a new vent ∼2.5 km from the fumaroles. Two fumaro...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-07-01
|
Series: | Frontiers in Earth Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/feart.2021.631190/full |
id |
doaj-1d8f54ddc876479da647ead99df3dc62 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gladys V. Melián Gladys V. Melián Gladys V. Melián Pedro A. Hernández Pedro A. Hernández Pedro A. Hernández Nemesio M. Pérez Nemesio M. Pérez Nemesio M. Pérez María Asensio-Ramos Eleazar Padrón Eleazar Padrón Eleazar Padrón Mar Alonso Mar Alonso Germán D. Padilla Germán D. Padilla José Barrancos José Barrancos Francesco Sortino Hirochicka Sumino Fátima Rodríguez Cecilia Amonte Sonia Silva Nadir Cardoso José M. Pereira |
spellingShingle |
Gladys V. Melián Gladys V. Melián Gladys V. Melián Pedro A. Hernández Pedro A. Hernández Pedro A. Hernández Nemesio M. Pérez Nemesio M. Pérez Nemesio M. Pérez María Asensio-Ramos Eleazar Padrón Eleazar Padrón Eleazar Padrón Mar Alonso Mar Alonso Germán D. Padilla Germán D. Padilla José Barrancos José Barrancos Francesco Sortino Hirochicka Sumino Fátima Rodríguez Cecilia Amonte Sonia Silva Nadir Cardoso José M. Pereira Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde Frontiers in Earth Science geochemistry volcanic gases fumarolic emission precursory signals Pico do Fogo volcano |
author_facet |
Gladys V. Melián Gladys V. Melián Gladys V. Melián Pedro A. Hernández Pedro A. Hernández Pedro A. Hernández Nemesio M. Pérez Nemesio M. Pérez Nemesio M. Pérez María Asensio-Ramos Eleazar Padrón Eleazar Padrón Eleazar Padrón Mar Alonso Mar Alonso Germán D. Padilla Germán D. Padilla José Barrancos José Barrancos Francesco Sortino Hirochicka Sumino Fátima Rodríguez Cecilia Amonte Sonia Silva Nadir Cardoso José M. Pereira |
author_sort |
Gladys V. Melián |
title |
Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde |
title_short |
Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde |
title_full |
Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde |
title_fullStr |
Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde |
title_full_unstemmed |
Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape Verde |
title_sort |
insights from fumarole gas geochemistry on the recent volcanic unrest of pico do fogo, cape verde |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Earth Science |
issn |
2296-6463 |
publishDate |
2021-07-01 |
description |
We report the results of the geochemical monitoring of the fumarolic discharges at the Pico do Fogo volcano in Cape Verde from 2007 to 2016. During this period Pico do Fogo experienced a volcanic eruption (November 23, 2014) that lasted 77 days, from a new vent ∼2.5 km from the fumaroles. Two fumaroles were sampled, a low (F1∼100°C) and a medium (F2∼300°C) temperature. The variations observed in the δ18O and δ2H in F1 and F2 suggest different fluid source contributions and/or fractionation processes. Although no significant changes were observed in the outlet fumarole temperatures, two clear increases were observed in the vapor fraction of fumarolic discharges during the periods November 2008–2010 and 2013–2014. Also, two sharp peaks were observed in CO2/CH4 ratios at both fumaroles, in November 2008 and November 2013. This confirms that gases with a strong magmatic component rose towards the surface within the Pico do Fogo system during 2008 and 2013. Further, F2 showed two CO2/Stotal peaks, the first in late 2010 and the second after eruption onset, suggesting the occurrence of magmatic pulses into the volcanic system. Time series of He/CO2, H2/CO2 and CO/CO2 ratios are low in 2008–2009, and high in 2013–2014 period, supporting the hypothesis of fluid input from a deeper magmatic source. Regarding to the isotopic composition, increases in air-corrected 3He/4He ratios are observed in both fumaroles; F1 showed a peak in 2010 from a minimum in 2009 during the first magmatic reactivation onset and another in late 2013, while F2 displayed a slower rise to its maximum in late 2013. The suite of geochemical species analyzed have considerably different reactivities, hence these integrated geochemical time-series can be used to detect the timing of magmatic arrivals to the base of the system, and importantly, indicate the typical time lags between gas release periods at depth and their arrival at the surface. The high 3He/4He ratios in both fumaroles in the range observed for mid-ocean ridge basalts, indicating that He is predominantly of upper mantle origin. This work supports that monitoring of the chemical and isotopic composition of the fumaroles of the Pico do Fogo volcano is a very important tool to understand the processes that take place in the magmatic-hydrothermal system and to be able to predict future episodes of volcanic unrest and to mitigate volcanic risk. |
topic |
geochemistry volcanic gases fumarolic emission precursory signals Pico do Fogo volcano |
url |
https://www.frontiersin.org/articles/10.3389/feart.2021.631190/full |
work_keys_str_mv |
AT gladysvmelian insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT gladysvmelian insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT gladysvmelian insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT pedroahernandez insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT pedroahernandez insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT pedroahernandez insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT nemesiomperez insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT nemesiomperez insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT nemesiomperez insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT mariaasensioramos insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT eleazarpadron insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT eleazarpadron insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT eleazarpadron insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT maralonso insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT maralonso insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT germandpadilla insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT germandpadilla insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT josebarrancos insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT josebarrancos insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT francescosortino insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT hirochickasumino insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT fatimarodriguez insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT ceciliaamonte insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT soniasilva insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT nadircardoso insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde AT josempereira insightsfromfumarolegasgeochemistryontherecentvolcanicunrestofpicodofogocapeverde |
_version_ |
1721301503046582272 |
spelling |
doaj-1d8f54ddc876479da647ead99df3dc622021-07-15T08:48:42ZengFrontiers Media S.A.Frontiers in Earth Science2296-64632021-07-01910.3389/feart.2021.631190631190Insights from Fumarole Gas Geochemistry on the Recent Volcanic Unrest of Pico do Fogo, Cape VerdeGladys V. Melián0Gladys V. Melián1Gladys V. Melián2Pedro A. Hernández3Pedro A. Hernández4Pedro A. Hernández5Nemesio M. Pérez6Nemesio M. Pérez7Nemesio M. Pérez8María Asensio-Ramos9Eleazar Padrón10Eleazar Padrón11Eleazar Padrón12Mar Alonso13Mar Alonso14Germán D. Padilla15Germán D. Padilla16José Barrancos17José Barrancos18Francesco Sortino19Hirochicka Sumino20Fátima Rodríguez21Cecilia Amonte22Sonia Silva23Nadir Cardoso24José M. Pereira25Instituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, SpainAgencia Insular de la Energía de Tenerife (AIET), Granadilla de Abona, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, SpainAgencia Insular de la Energía de Tenerife (AIET), Granadilla de Abona, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, SpainAgencia Insular de la Energía de Tenerife (AIET), Granadilla de Abona, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, SpainAgencia Insular de la Energía de Tenerife (AIET), Granadilla de Abona, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Tecnológico y de Energías Renovables (ITER), Granadilla de Abona, SpainIstituto Nazionale di Geofisica e Vulcanologia - Sezione Roma 2, Roma, ItalyDepartment of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, JapanInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainInstituto Volcanológico de Canarias (INVOLCAN), La Laguna, SpainUniversidade de Cabo Verde (UNICV), Praia, Cape VerdeUniversidade de Cabo Verde (UNICV), Praia, Cape VerdeLaboratório de Engenharia Civil of Cape Verde (LEC) Tira - Chapéu, Praia, Cape VerdeWe report the results of the geochemical monitoring of the fumarolic discharges at the Pico do Fogo volcano in Cape Verde from 2007 to 2016. During this period Pico do Fogo experienced a volcanic eruption (November 23, 2014) that lasted 77 days, from a new vent ∼2.5 km from the fumaroles. Two fumaroles were sampled, a low (F1∼100°C) and a medium (F2∼300°C) temperature. The variations observed in the δ18O and δ2H in F1 and F2 suggest different fluid source contributions and/or fractionation processes. Although no significant changes were observed in the outlet fumarole temperatures, two clear increases were observed in the vapor fraction of fumarolic discharges during the periods November 2008–2010 and 2013–2014. Also, two sharp peaks were observed in CO2/CH4 ratios at both fumaroles, in November 2008 and November 2013. This confirms that gases with a strong magmatic component rose towards the surface within the Pico do Fogo system during 2008 and 2013. Further, F2 showed two CO2/Stotal peaks, the first in late 2010 and the second after eruption onset, suggesting the occurrence of magmatic pulses into the volcanic system. Time series of He/CO2, H2/CO2 and CO/CO2 ratios are low in 2008–2009, and high in 2013–2014 period, supporting the hypothesis of fluid input from a deeper magmatic source. Regarding to the isotopic composition, increases in air-corrected 3He/4He ratios are observed in both fumaroles; F1 showed a peak in 2010 from a minimum in 2009 during the first magmatic reactivation onset and another in late 2013, while F2 displayed a slower rise to its maximum in late 2013. The suite of geochemical species analyzed have considerably different reactivities, hence these integrated geochemical time-series can be used to detect the timing of magmatic arrivals to the base of the system, and importantly, indicate the typical time lags between gas release periods at depth and their arrival at the surface. The high 3He/4He ratios in both fumaroles in the range observed for mid-ocean ridge basalts, indicating that He is predominantly of upper mantle origin. This work supports that monitoring of the chemical and isotopic composition of the fumaroles of the Pico do Fogo volcano is a very important tool to understand the processes that take place in the magmatic-hydrothermal system and to be able to predict future episodes of volcanic unrest and to mitigate volcanic risk.https://www.frontiersin.org/articles/10.3389/feart.2021.631190/fullgeochemistryvolcanic gasesfumarolic emissionprecursory signalsPico do Fogo volcano |