Solar Field Mapping and Dynamo Behavior

We discuss the importance of the Sun’s large-scale magnetic field to the Sun-Planetary environment. This paper narrows its focus down to the motion and evolution of the photospheric large-scale magnetic field which affects many environments throughout this region. For this purpose we utilize a newly...

Full description

Bibliographic Details
Main Author: Kenneth H. Schatten
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Advances in Astronomy
Online Access:http://dx.doi.org/10.1155/2012/923578
Description
Summary:We discuss the importance of the Sun’s large-scale magnetic field to the Sun-Planetary environment. This paper narrows its focus down to the motion and evolution of the photospheric large-scale magnetic field which affects many environments throughout this region. For this purpose we utilize a newly developed Netlogo cellular automata model. The domain of this algorithmic model is the Sun’s photosphere. Within this computational space are placed two types of entities or agents; one may refer to them as bluebirds and cardinals; the former carries outward magnetic flux and the latter carries out inward magnetic flux. One may simply call them blue and red agents. The agents provide a granularity with discrete changes not present in smooth MHD models; they undergo three processes: birth, motion, and death within the photospheric domain. We discuss these processes, as well as how we are able to develop a model that restricts its domain to the photosphere and allows the deeper layers to be considered only through boundary conditions. We show the model’s ability to mimic a number of photospheric magnetic phenomena: the solar cycle (11-year) oscillations, the Waldmeier effect, unipolar magnetic regions (e.g. sectors and coronal holes), Maunder minima, and the march/rush to the poles involving the geometry of magnetic field reversals. We also discuss why the Sun sometimes appears as a magnetic monopole, which of course requires no alteration of Maxwell’s equations.
ISSN:1687-7969
1687-7977