Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions
In the present investigation, our aim is to define a generalized subclass of analytic and bi-univalent functions associated with a certain $q$-integral operator in the open unit disk $\mathbb{U}$. We estimate bounds on the initial Taylor-Maclaurin coefficients $\left \vert a_{2}\right \vert$ and $\l...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2021-11-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/10.3934/math.2021061/fulltext.html |
Summary: | In the present investigation, our aim is to define a generalized subclass of analytic and bi-univalent functions associated with a certain $q$-integral operator in the open unit disk $\mathbb{U}$. We estimate bounds on the initial Taylor-Maclaurin coefficients $\left \vert a_{2}\right \vert$ and $\left \vert a_{3}\right \vert $ for normalized analytic functions $f$ in the open unit disk by considering the function $f$ and its inverse $g = f^{{-}{1}}$. Furthermore, we derive special consequences of the results presented here, which would apply to several (known or new) subclasses of analytic and bi-univalent functions. |
---|---|
ISSN: | 2473-6988 |