The Dispersion Rule of Fragments about the Asymmetric Shell

In order to obtain the dispersion rule of fragments about the asymmetric shell subjected to internal blast loading, two different cross section structures, concave-shaped and convex-shaped, were carried out by experimental and numerical methods. The simulation results well coincided with the experim...

Full description

Bibliographic Details
Main Authors: Liangliang Ding, Zhenduo Li, Minzu Liang, Xiangyu Li, Fangyun Lu
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2017/9810978
Description
Summary:In order to obtain the dispersion rule of fragments about the asymmetric shell subjected to internal blast loading, two different cross section structures, concave-shaped and convex-shaped, were carried out by experimental and numerical methods. The simulation results well coincided with the experimental results, and the spatial distribution and fragment velocity were obtained. The optimal curvatures for the different concave structures changed from 4r to 6r (r represents the charge radius), as the central angle of concave structure changed from 90° to 120°. However, the optimal curvature changed weakly when the central angle of concave structure was larger than 120°. In addition, a formula which can rapidly predict the projection angle range was fitted for the convex structure. The conclusions can provide a reference for concave-shaped and convex-shaped structures to achieve a higher effectiveness of fragments.
ISSN:1070-9622
1875-9203