Changes in the stressed state of the framework of the metal ribbed-ring dome during the assembly process
Aims of research. To analyze the stress state of the metal structures of the ribbedring dome of a hemispherical shape during the assembly process of the dome frame in two fundamentally different ways - “top-down” and “bottom-up”. Since different design schemes arise at different stages of assembly o...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Peoples’ Friendship University of Russia (RUDN University)
2019-12-01
|
Series: | Structural Mechanics of Engineering Constructions and Buildings |
Subjects: | |
Online Access: | http://journals.rudn.ru/structural-mechanics/article/viewFile/21805/17259 |
Summary: | Aims of research. To analyze the stress state of the metal structures of the ribbedring dome of a hemispherical shape during the assembly process of the dome frame in two fundamentally different ways - “top-down” and “bottom-up”. Since different design schemes arise at different stages of assembly of the dome frame, different assembly forces result in their structural elements. To demonstrate how assembly forces lead to the tension state of a ribbed-ring dome that is transformed during the construction process. To perform the analysis of the stress states of the considered assembly methods and to present their evaluation. Methods. A computer model of a metal ribbed-ring dome made of steel I -beams with rigid joints has been developed. Several additional assembly models of an incomplete frame have been created for studying the considered assembly at different stages. Computer calculations for the effect of its self-weight were made for each assembly model of the dome frame. As a result of the calculations, the stresses in the structural elements of the frames of the assembly schemes were determined, which were compared with similar stresses resulting from the self-weight in the frame of the design scheme. Results. Diagrams of changes in the stress state of structural elements of a metal ribbed-ring dome are presented. The efficiency of use of steel strength at different stages of installation is also shown in the diagrams. A comparative assessment is given for the stress conditions due to the assembly methods under consideration. The inevitability of installation stresses is noted and the most efficient assembly method of installation is chosen. |
---|---|
ISSN: | 1815-5235 2587-8700 |