Molecular components in D*s0(2317) and Ds1(2460) mesons

Different experiments have confirmed that the D*s0(2317) and Ds1(2460) mesons are very narrow states located, respectively, below the DK and D*K thresholds. This is markedly in contrast with the expectations of naive quark models and heavy quark symmetry. We address the mass shifts of the cs̄ ground...

Full description

Bibliographic Details
Main Authors: Ortega Pablo G., Segovia Jorge, Entem David R., Fernández Francisco
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/201613002009
Description
Summary:Different experiments have confirmed that the D*s0(2317) and Ds1(2460) mesons are very narrow states located, respectively, below the DK and D*K thresholds. This is markedly in contrast with the expectations of naive quark models and heavy quark symmetry. We address the mass shifts of the cs̄ ground states with quantum numbers JP = 0+ (D*s0(2317)) and JP = 1+ (Ds1(2460)) using a nonrelativistic constituent quark model in which quark-antiquark and meson-meson degrees of freedom are incorporated. The quark model has been applied to a wide range of hadronic observables and thus the model parameters are completely constrained. We observe that the coupling of the 0+ (1+) meson sector to the DK (D*K) threshold is a key feature in lowering the masses of the corresponding D*s0(2317) and Ds1(2460) states predicted by the naive quark model, but also in describing the Ds1(2536) meson as the 1+ state of the jPq = 3/2+ doublet predicted by heavy quark symmetry and thus reproducing its strong decay properties. Two features of our formalism cannot be address nowadays by other approaches: the coupling of the D-wave D*K threshold in the JP = 1+ cs̄ channel and the computation of the probabilities associated with different Fock components in the physical state.
ISSN:2100-014X