Temperature-Dependent Circularly Polarized Luminescence Measurement Using KBr Pellet Method
Circularly polarized luminescence (CPL) spectroscopy measures the difference in luminescence intensity between left- and right-circularly polarized light, and is often used to analyze the structure of chiral molecules in their excited state. Recently, it has found an increasing range of applications...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-06-01
|
Series: | Frontiers in Chemistry |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fchem.2020.00527/full |
id |
doaj-1d33fb8cd374404a9780d1b6dfc531c2 |
---|---|
record_format |
Article |
spelling |
doaj-1d33fb8cd374404a9780d1b6dfc531c22020-11-25T03:47:15ZengFrontiers Media S.A.Frontiers in Chemistry2296-26462020-06-01810.3389/fchem.2020.00527539973Temperature-Dependent Circularly Polarized Luminescence Measurement Using KBr Pellet MethodYoshiro Kondo0Satoko Suzuki1Masayuki Watanabe2Akio Kaneta3Paolo Albertini4Koushi Nagamori5JASCO Corporation, Hachioji, JapanJASCO Corporation, Hachioji, JapanJASCO Corporation, Hachioji, JapanJASCO Corporation, Hachioji, JapanJASCO Europe srl, Cremella, ItalyJASCO Corporation, Hachioji, JapanCircularly polarized luminescence (CPL) spectroscopy measures the difference in luminescence intensity between left- and right-circularly polarized light, and is often used to analyze the structure of chiral molecules in their excited state. Recently, it has found an increasing range of applications in the analysis of molecules that emit circularly polarized light and can be employed in 3D displays. Thus, the number of articles focusing on CPL spectroscopy has increased dramatically. However, since the luminescence dissymmetry factor (glum) for organic compounds is generally <|0.01|, CPL spectrometers must offer high sensitivity and produce spectra that are artifact-free for chiral molecules. Until now, the principal targets of CPL measurements have been solution samples. However, for practical device applications, it is also necessary to be able to measure the CPL spectra of solid-state samples. In addition, since electronic devices often operate at high temperatures, it is important to evaluate the thermal dependence of the CPL characteristics. Moreover, in the measurement of solid-state samples, the degree of anisotropy of the samples must be evaluated, because a large degree of anisotropy can cause artifacts. Therefore, we describe methods to evaluate the degree of anisotropy of solid-state samples and their high-temperature applications.https://www.frontiersin.org/article/10.3389/fchem.2020.00527/fullCPLeuropium complexsolid-state CPL measurementtemperature-dependent CPL measurementsKBr pellet |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yoshiro Kondo Satoko Suzuki Masayuki Watanabe Akio Kaneta Paolo Albertini Koushi Nagamori |
spellingShingle |
Yoshiro Kondo Satoko Suzuki Masayuki Watanabe Akio Kaneta Paolo Albertini Koushi Nagamori Temperature-Dependent Circularly Polarized Luminescence Measurement Using KBr Pellet Method Frontiers in Chemistry CPL europium complex solid-state CPL measurement temperature-dependent CPL measurements KBr pellet |
author_facet |
Yoshiro Kondo Satoko Suzuki Masayuki Watanabe Akio Kaneta Paolo Albertini Koushi Nagamori |
author_sort |
Yoshiro Kondo |
title |
Temperature-Dependent Circularly Polarized Luminescence Measurement Using KBr Pellet Method |
title_short |
Temperature-Dependent Circularly Polarized Luminescence Measurement Using KBr Pellet Method |
title_full |
Temperature-Dependent Circularly Polarized Luminescence Measurement Using KBr Pellet Method |
title_fullStr |
Temperature-Dependent Circularly Polarized Luminescence Measurement Using KBr Pellet Method |
title_full_unstemmed |
Temperature-Dependent Circularly Polarized Luminescence Measurement Using KBr Pellet Method |
title_sort |
temperature-dependent circularly polarized luminescence measurement using kbr pellet method |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Chemistry |
issn |
2296-2646 |
publishDate |
2020-06-01 |
description |
Circularly polarized luminescence (CPL) spectroscopy measures the difference in luminescence intensity between left- and right-circularly polarized light, and is often used to analyze the structure of chiral molecules in their excited state. Recently, it has found an increasing range of applications in the analysis of molecules that emit circularly polarized light and can be employed in 3D displays. Thus, the number of articles focusing on CPL spectroscopy has increased dramatically. However, since the luminescence dissymmetry factor (glum) for organic compounds is generally <|0.01|, CPL spectrometers must offer high sensitivity and produce spectra that are artifact-free for chiral molecules. Until now, the principal targets of CPL measurements have been solution samples. However, for practical device applications, it is also necessary to be able to measure the CPL spectra of solid-state samples. In addition, since electronic devices often operate at high temperatures, it is important to evaluate the thermal dependence of the CPL characteristics. Moreover, in the measurement of solid-state samples, the degree of anisotropy of the samples must be evaluated, because a large degree of anisotropy can cause artifacts. Therefore, we describe methods to evaluate the degree of anisotropy of solid-state samples and their high-temperature applications. |
topic |
CPL europium complex solid-state CPL measurement temperature-dependent CPL measurements KBr pellet |
url |
https://www.frontiersin.org/article/10.3389/fchem.2020.00527/full |
work_keys_str_mv |
AT yoshirokondo temperaturedependentcircularlypolarizedluminescencemeasurementusingkbrpelletmethod AT satokosuzuki temperaturedependentcircularlypolarizedluminescencemeasurementusingkbrpelletmethod AT masayukiwatanabe temperaturedependentcircularlypolarizedluminescencemeasurementusingkbrpelletmethod AT akiokaneta temperaturedependentcircularlypolarizedluminescencemeasurementusingkbrpelletmethod AT paoloalbertini temperaturedependentcircularlypolarizedluminescencemeasurementusingkbrpelletmethod AT koushinagamori temperaturedependentcircularlypolarizedluminescencemeasurementusingkbrpelletmethod |
_version_ |
1724502716222275584 |