Stochastic Dynamic Programming for Three-Echelon Inventory System of Limited Shelf Life Products
Coordination of inventory decisions within the supply chain is one of the major determinants of its competitiveness in the global market. Products with limited shelf life impose additional challenges in managing the inventory across the supply chain because of the additional wastage costs incurred i...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2016-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | http://dx.doi.org/10.1051/matecconf/20166806006 |
Summary: | Coordination of inventory decisions within the supply chain is one of the major determinants of its competitiveness in the global market. Products with limited shelf life impose additional challenges in managing the inventory across the supply chain because of the additional wastage costs incurred in case of being stored beyond product’s useful life. This paper presents a stochastic dynamic programming model for inventory replenishment in a serial multi-echelon distribution supply chain. The model considers uncertain stationary discrete demand at the retailer and zero lead time. The objective is to minimize expected total costs across the supply chain echelons, while maintaining a preset service level. The results illustrate that a cost saving of around 17% is achievable due to coordinating inventory decisions across the supply chain. |
---|---|
ISSN: | 2261-236X |