Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis
Since its discovery, small interfering RNA (siRNA) has been considered a potent tool for modulating gene expression. It has the ability to specifically target proteins via selective degradation of messenger RNA (mRNA) not easily accessed by conventional drugs. Hence, RNA interference (RNAi) therapeu...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2016-01-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | http://www.mdpi.com/2079-4991/6/1/8 |
id |
doaj-1d2934a8b137461eada599ab6a0c7732 |
---|---|
record_format |
Article |
spelling |
doaj-1d2934a8b137461eada599ab6a0c77322020-11-25T00:00:40ZengMDPI AGNanomaterials2079-49912016-01-0161810.3390/nano6010008nano6010008Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal FibrosisFatima Khaja0Dulari Jayawardena1Antonina Kuzmis2Hayat Önyüksel3Department of Biopharmaceutical Sciences (M/C 865), College of Pharmacy, University of Illinois at Chicago, 833 South Wood St., Chicago, IL 60612-7231, USADepartment of Biopharmaceutical Sciences (M/C 865), College of Pharmacy, University of Illinois at Chicago, 833 South Wood St., Chicago, IL 60612-7231, USADepartment of Biopharmaceutical Sciences (M/C 865), College of Pharmacy, University of Illinois at Chicago, 833 South Wood St., Chicago, IL 60612-7231, USADepartment of Biopharmaceutical Sciences (M/C 865), College of Pharmacy, University of Illinois at Chicago, 833 South Wood St., Chicago, IL 60612-7231, USASince its discovery, small interfering RNA (siRNA) has been considered a potent tool for modulating gene expression. It has the ability to specifically target proteins via selective degradation of messenger RNA (mRNA) not easily accessed by conventional drugs. Hence, RNA interference (RNAi) therapeutics have great potential in the treatment of many diseases caused by faulty protein expression such as fibrosis and cancer. However, for clinical application siRNA faces a number of obstacles, such as poor in vivo stability, and off-target effects. Here we developed a unique targeted nanomedicine to tackle current siRNA delivery issues by formulating a biocompatible, biodegradable and relatively inexpensive nanocarrier of sterically stabilized phospholipid nanoparticles (SSLNPs). This nanocarrier is capable of incorporating siRNA in its core through self-association with a novel cationic lipid composed of naturally occuring phospholipids and amino acids. This overall assembly protects and delivers sufficient amounts of siRNA to knockdown over-expressed protein in target cells. The siRNA used in this study, targets connective tissue growth factor (CTGF), an important regulator of fibrosis in both hepatic and renal cells. Furthermore, asialoglycoprotein receptors are targeted by attaching the galactosamine ligand to the nanocarries which enhances the uptake of nanoparticles by hepatocytes and renal tubular epithelial cells, the major producers of CTGF in fibrosis. On animals this innovative nanoconstruct, small interfering RNA in sterically stabilized phospholipid nanoparticles (siRNA-SSLNP), showed favorable pharmacokinetic properties and accumulated mostly in hepatic and renal tissues making siRNA-SSLNP a suitable system for targeting liver and kidney fibrotic diseases.http://www.mdpi.com/2079-4991/6/1/8siRNAsterically stabilized phospholipid nanoparticlesgalactosaminehepatic stellate cellsfibrosis |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fatima Khaja Dulari Jayawardena Antonina Kuzmis Hayat Önyüksel |
spellingShingle |
Fatima Khaja Dulari Jayawardena Antonina Kuzmis Hayat Önyüksel Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis Nanomaterials siRNA sterically stabilized phospholipid nanoparticles galactosamine hepatic stellate cells fibrosis |
author_facet |
Fatima Khaja Dulari Jayawardena Antonina Kuzmis Hayat Önyüksel |
author_sort |
Fatima Khaja |
title |
Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis |
title_short |
Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis |
title_full |
Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis |
title_fullStr |
Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis |
title_full_unstemmed |
Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis |
title_sort |
targeted sterically stabilized phospholipid sirna nanomedicine for hepatic and renal fibrosis |
publisher |
MDPI AG |
series |
Nanomaterials |
issn |
2079-4991 |
publishDate |
2016-01-01 |
description |
Since its discovery, small interfering RNA (siRNA) has been considered a potent tool for modulating gene expression. It has the ability to specifically target proteins via selective degradation of messenger RNA (mRNA) not easily accessed by conventional drugs. Hence, RNA interference (RNAi) therapeutics have great potential in the treatment of many diseases caused by faulty protein expression such as fibrosis and cancer. However, for clinical application siRNA faces a number of obstacles, such as poor in vivo stability, and off-target effects. Here we developed a unique targeted nanomedicine to tackle current siRNA delivery issues by formulating a biocompatible, biodegradable and relatively inexpensive nanocarrier of sterically stabilized phospholipid nanoparticles (SSLNPs). This nanocarrier is capable of incorporating siRNA in its core through self-association with a novel cationic lipid composed of naturally occuring phospholipids and amino acids. This overall assembly protects and delivers sufficient amounts of siRNA to knockdown over-expressed protein in target cells. The siRNA used in this study, targets connective tissue growth factor (CTGF), an important regulator of fibrosis in both hepatic and renal cells. Furthermore, asialoglycoprotein receptors are targeted by attaching the galactosamine ligand to the nanocarries which enhances the uptake of nanoparticles by hepatocytes and renal tubular epithelial cells, the major producers of CTGF in fibrosis. On animals this innovative nanoconstruct, small interfering RNA in sterically stabilized phospholipid nanoparticles (siRNA-SSLNP), showed favorable pharmacokinetic properties and accumulated mostly in hepatic and renal tissues making siRNA-SSLNP a suitable system for targeting liver and kidney fibrotic diseases. |
topic |
siRNA sterically stabilized phospholipid nanoparticles galactosamine hepatic stellate cells fibrosis |
url |
http://www.mdpi.com/2079-4991/6/1/8 |
work_keys_str_mv |
AT fatimakhaja targetedstericallystabilizedphospholipidsirnananomedicineforhepaticandrenalfibrosis AT dularijayawardena targetedstericallystabilizedphospholipidsirnananomedicineforhepaticandrenalfibrosis AT antoninakuzmis targetedstericallystabilizedphospholipidsirnananomedicineforhepaticandrenalfibrosis AT hayatonyuksel targetedstericallystabilizedphospholipidsirnananomedicineforhepaticandrenalfibrosis |
_version_ |
1725444025057542144 |