Tangential Change Behavior and Pedestrian Simulation of Multichannel Evacuation Crowd

In evacuation, the velocity difference of adjacent pedestrians before and after often leads to tangential change of pedestrian location in channel. This tangential change behavior and its interaction disturb the stable state of crowd evacuation in multiple channels, which can affect the efficiency o...

Full description

Bibliographic Details
Main Authors: Lianghai Jin, Mei Fang, Shu Chen, Wenfan Lei, Yun Chen
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2020/7649094
Description
Summary:In evacuation, the velocity difference of adjacent pedestrians before and after often leads to tangential change of pedestrian location in channel. This tangential change behavior and its interaction disturb the stable state of crowd evacuation in multiple channels, which can affect the efficiency of crowd evacuation and even cause trampling accidents. This paper considers the dynamic comfort distance and the expected speed and analyzes the relative position changes after pedestrians change lanes. It investigates the conditions of tangential change behavior and defines the rules of tangential change behavior processing. Meanwhile, it investigates the crowd’s tangential change behavior and its interaction process, revealing the crowd evacuation mechanism of tangential change behavior conditions. Simulation results show that as the crowd density gradually increases, pedestrians exhibit the evolutionary characteristic of “no tangential change ⟶ occasional tangential change ⟶ frequent tangential change ⟶ closely following.” The evacuation speed is obviously influenced by pedestrian’s tangential change behavior and crowd density; when the pedestrian density ρ=2.0 and ρ=3.0, the tangential change behavior not only makes the speed difference and fluctuation between different lanes great but also has the same effect on the average speed of pedestrians. The results of this study can provide theoretical insights into the organization of multichannel evacuation and expand the theoretical space of crowd dynamics in an evacuation.
ISSN:1024-123X
1563-5147