Summary: | Exploring the influencing factors of intercity travel mode choice can reveal passengers’ travel decision mechanisms and help traffic departments to develop an effective demand management policy. To investigate these factors, a survey was conducted in Xi’an, China, to collect data about passengers’ travel chains, including airplane, high-speed railway (HSR), train, and express bus. A Bayesian mixed multinomial logit model is developed to identify significant factors and explicate unobserved heterogeneity across observations. The effect of significant factors on intercity travel mode choice is quantitatively assessed by the odds ratio (OR) technique. The results show that the Bayesian mixed multinomial logit model outperforms the traditional Bayesian multinomial logit model, indicating that accommodating the unobserved heterogeneity across observations can improve the model fit. The model estimation results show that ticket purchasing method, comfort, punctuality, and access time are random parameters that have heterogeneous effects on intercity travel mode choice.
|