Summary: | Although molecular-scale wood-water interactions needed for moisture-durability can lead to the accelerated development of moisture-durable products, these interactions are often experimentally elusive. In this perspective, the topic’s state of the art understanding will be discussed, excluding computational work. Recent research efforts based on infrared spectroscopy methods have provided new insights in terms of the accessibility of the wood polymers and moisture-induced polymer dynamics. Likewise, neutron scattering and nuclear magnetic relaxometry experiments have shown that bound water can be found within more than one local environment inside the cell wall. However, a majority of the experiments have focused on studying extracted or derived polymers instead of unmodified wood. Thus, in this paper some of the questions that still need to be addressed experimentally will also be highlighted.
|