Reparametrization Invariance and Some of the Key Properties of Physical Systems

In this paper, we argue in favor of first-order homogeneous Lagrangians in the velocities. The relevant form of such Lagrangians is discussed and justified physically and geometrically. Such Lagrangian systems possess Reparametrization Invariance (RI) and explain the observed common Arrow of Time as...

Full description

Bibliographic Details
Main Authors: Vesselin G. Gueorguiev, Andre Maeder
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/3/522
id doaj-1cbc419467f6407b8e7be8fb7c3bcd1f
record_format Article
spelling doaj-1cbc419467f6407b8e7be8fb7c3bcd1f2021-03-24T00:04:45ZengMDPI AGSymmetry2073-89942021-03-011352252210.3390/sym13030522Reparametrization Invariance and Some of the Key Properties of Physical SystemsVesselin G. Gueorguiev0Andre Maeder1Institute for Advanced Physical Studies, 1784 Sofia, BulgariaGeneva Observatory, University of Geneva, Chemin des Maillettes 51, CH-1290 Sauverny, SwitzerlandIn this paper, we argue in favor of first-order homogeneous Lagrangians in the velocities. The relevant form of such Lagrangians is discussed and justified physically and geometrically. Such Lagrangian systems possess Reparametrization Invariance (RI) and explain the observed common Arrow of Time as related to the non-negative mass for physical particles. The extended Hamiltonian formulation, which is generally covariant and applicable to reparametrization-invariant systems, is emphasized. The connection between the explicit form of the extended Hamiltonian <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">H</mi></semantics></math></inline-formula> and the meaning of the process parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> is illustrated. The corresponding extended Hamiltonian <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">H</mi></semantics></math></inline-formula> defines the classical phase space-time of the system via the Hamiltonian constraint <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">H</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and guarantees that the Classical Hamiltonian <i>H</i> corresponds to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>p</mi><mn>0</mn></msub></semantics></math></inline-formula>—the energy of the particle when the coordinate time parametrization is chosen. The Schrödinger’s equation and the principle of superposition of quantum states emerge naturally. A connection is demonstrated between the positivity of the energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>=</mo><mi>c</mi><msub><mi>p</mi><mn>0</mn></msub><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> and the normalizability of the wave function by using the extended Hamiltonian that is relevant for the proper-time parametrization.https://www.mdpi.com/2073-8994/13/3/522diffeomorphism invariant systemsreparametrization-invariant systemsHamiltonian constrainthomogeneous singular Lagrangiansgenerally covariant theoryequivalence of the Lagrangian and Hamiltonian framework
collection DOAJ
language English
format Article
sources DOAJ
author Vesselin G. Gueorguiev
Andre Maeder
spellingShingle Vesselin G. Gueorguiev
Andre Maeder
Reparametrization Invariance and Some of the Key Properties of Physical Systems
Symmetry
diffeomorphism invariant systems
reparametrization-invariant systems
Hamiltonian constraint
homogeneous singular Lagrangians
generally covariant theory
equivalence of the Lagrangian and Hamiltonian framework
author_facet Vesselin G. Gueorguiev
Andre Maeder
author_sort Vesselin G. Gueorguiev
title Reparametrization Invariance and Some of the Key Properties of Physical Systems
title_short Reparametrization Invariance and Some of the Key Properties of Physical Systems
title_full Reparametrization Invariance and Some of the Key Properties of Physical Systems
title_fullStr Reparametrization Invariance and Some of the Key Properties of Physical Systems
title_full_unstemmed Reparametrization Invariance and Some of the Key Properties of Physical Systems
title_sort reparametrization invariance and some of the key properties of physical systems
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-03-01
description In this paper, we argue in favor of first-order homogeneous Lagrangians in the velocities. The relevant form of such Lagrangians is discussed and justified physically and geometrically. Such Lagrangian systems possess Reparametrization Invariance (RI) and explain the observed common Arrow of Time as related to the non-negative mass for physical particles. The extended Hamiltonian formulation, which is generally covariant and applicable to reparametrization-invariant systems, is emphasized. The connection between the explicit form of the extended Hamiltonian <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">H</mi></semantics></math></inline-formula> and the meaning of the process parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> is illustrated. The corresponding extended Hamiltonian <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">H</mi></semantics></math></inline-formula> defines the classical phase space-time of the system via the Hamiltonian constraint <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">H</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and guarantees that the Classical Hamiltonian <i>H</i> corresponds to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>p</mi><mn>0</mn></msub></semantics></math></inline-formula>—the energy of the particle when the coordinate time parametrization is chosen. The Schrödinger’s equation and the principle of superposition of quantum states emerge naturally. A connection is demonstrated between the positivity of the energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>=</mo><mi>c</mi><msub><mi>p</mi><mn>0</mn></msub><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> and the normalizability of the wave function by using the extended Hamiltonian that is relevant for the proper-time parametrization.
topic diffeomorphism invariant systems
reparametrization-invariant systems
Hamiltonian constraint
homogeneous singular Lagrangians
generally covariant theory
equivalence of the Lagrangian and Hamiltonian framework
url https://www.mdpi.com/2073-8994/13/3/522
work_keys_str_mv AT vesselinggueorguiev reparametrizationinvarianceandsomeofthekeypropertiesofphysicalsystems
AT andremaeder reparametrizationinvarianceandsomeofthekeypropertiesofphysicalsystems
_version_ 1724205340420997120