Reparametrization Invariance and Some of the Key Properties of Physical Systems
In this paper, we argue in favor of first-order homogeneous Lagrangians in the velocities. The relevant form of such Lagrangians is discussed and justified physically and geometrically. Such Lagrangian systems possess Reparametrization Invariance (RI) and explain the observed common Arrow of Time as...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/3/522 |
id |
doaj-1cbc419467f6407b8e7be8fb7c3bcd1f |
---|---|
record_format |
Article |
spelling |
doaj-1cbc419467f6407b8e7be8fb7c3bcd1f2021-03-24T00:04:45ZengMDPI AGSymmetry2073-89942021-03-011352252210.3390/sym13030522Reparametrization Invariance and Some of the Key Properties of Physical SystemsVesselin G. Gueorguiev0Andre Maeder1Institute for Advanced Physical Studies, 1784 Sofia, BulgariaGeneva Observatory, University of Geneva, Chemin des Maillettes 51, CH-1290 Sauverny, SwitzerlandIn this paper, we argue in favor of first-order homogeneous Lagrangians in the velocities. The relevant form of such Lagrangians is discussed and justified physically and geometrically. Such Lagrangian systems possess Reparametrization Invariance (RI) and explain the observed common Arrow of Time as related to the non-negative mass for physical particles. The extended Hamiltonian formulation, which is generally covariant and applicable to reparametrization-invariant systems, is emphasized. The connection between the explicit form of the extended Hamiltonian <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">H</mi></semantics></math></inline-formula> and the meaning of the process parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> is illustrated. The corresponding extended Hamiltonian <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">H</mi></semantics></math></inline-formula> defines the classical phase space-time of the system via the Hamiltonian constraint <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">H</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and guarantees that the Classical Hamiltonian <i>H</i> corresponds to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>p</mi><mn>0</mn></msub></semantics></math></inline-formula>—the energy of the particle when the coordinate time parametrization is chosen. The Schrödinger’s equation and the principle of superposition of quantum states emerge naturally. A connection is demonstrated between the positivity of the energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>=</mo><mi>c</mi><msub><mi>p</mi><mn>0</mn></msub><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> and the normalizability of the wave function by using the extended Hamiltonian that is relevant for the proper-time parametrization.https://www.mdpi.com/2073-8994/13/3/522diffeomorphism invariant systemsreparametrization-invariant systemsHamiltonian constrainthomogeneous singular Lagrangiansgenerally covariant theoryequivalence of the Lagrangian and Hamiltonian framework |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Vesselin G. Gueorguiev Andre Maeder |
spellingShingle |
Vesselin G. Gueorguiev Andre Maeder Reparametrization Invariance and Some of the Key Properties of Physical Systems Symmetry diffeomorphism invariant systems reparametrization-invariant systems Hamiltonian constraint homogeneous singular Lagrangians generally covariant theory equivalence of the Lagrangian and Hamiltonian framework |
author_facet |
Vesselin G. Gueorguiev Andre Maeder |
author_sort |
Vesselin G. Gueorguiev |
title |
Reparametrization Invariance and Some of the Key Properties of Physical Systems |
title_short |
Reparametrization Invariance and Some of the Key Properties of Physical Systems |
title_full |
Reparametrization Invariance and Some of the Key Properties of Physical Systems |
title_fullStr |
Reparametrization Invariance and Some of the Key Properties of Physical Systems |
title_full_unstemmed |
Reparametrization Invariance and Some of the Key Properties of Physical Systems |
title_sort |
reparametrization invariance and some of the key properties of physical systems |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-03-01 |
description |
In this paper, we argue in favor of first-order homogeneous Lagrangians in the velocities. The relevant form of such Lagrangians is discussed and justified physically and geometrically. Such Lagrangian systems possess Reparametrization Invariance (RI) and explain the observed common Arrow of Time as related to the non-negative mass for physical particles. The extended Hamiltonian formulation, which is generally covariant and applicable to reparametrization-invariant systems, is emphasized. The connection between the explicit form of the extended Hamiltonian <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">H</mi></semantics></math></inline-formula> and the meaning of the process parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> is illustrated. The corresponding extended Hamiltonian <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">H</mi></semantics></math></inline-formula> defines the classical phase space-time of the system via the Hamiltonian constraint <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">H</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and guarantees that the Classical Hamiltonian <i>H</i> corresponds to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>p</mi><mn>0</mn></msub></semantics></math></inline-formula>—the energy of the particle when the coordinate time parametrization is chosen. The Schrödinger’s equation and the principle of superposition of quantum states emerge naturally. A connection is demonstrated between the positivity of the energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>=</mo><mi>c</mi><msub><mi>p</mi><mn>0</mn></msub><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> and the normalizability of the wave function by using the extended Hamiltonian that is relevant for the proper-time parametrization. |
topic |
diffeomorphism invariant systems reparametrization-invariant systems Hamiltonian constraint homogeneous singular Lagrangians generally covariant theory equivalence of the Lagrangian and Hamiltonian framework |
url |
https://www.mdpi.com/2073-8994/13/3/522 |
work_keys_str_mv |
AT vesselinggueorguiev reparametrizationinvarianceandsomeofthekeypropertiesofphysicalsystems AT andremaeder reparametrizationinvarianceandsomeofthekeypropertiesofphysicalsystems |
_version_ |
1724205340420997120 |