Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term
In this article, we consider the problem $$ -\Delta u =b(x)g(u)+ \lambda a(x)|\nabla u|^{q}+\sigma(x),\; u > 0,\; x\in \Omega,\quad u|_{\partial \Omega }= 0 $$ with $\lambda\in\mathbb{R}$, $q\in [0, 2]$ in a smooth bounded domain $\Omega$ of $\mathbb{R}^{N}$. The weight functions $b, a,\...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2015-03-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2015/57/abstr.html |
id |
doaj-1cb829ded8eb4ec9b20e4912707e96e4 |
---|---|
record_format |
Article |
spelling |
doaj-1cb829ded8eb4ec9b20e4912707e96e42020-11-24T21:22:54ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912015-03-01201557,133Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection termHaitao Wan0 Lanzhou Univ., Lanzhou, China In this article, we consider the problem $$ -\Delta u =b(x)g(u)+ \lambda a(x)|\nabla u|^{q}+\sigma(x),\; u > 0,\; x\in \Omega,\quad u|_{\partial \Omega }= 0 $$ with $\lambda\in\mathbb{R}$, $q\in [0, 2]$ in a smooth bounded domain $\Omega$ of $\mathbb{R}^{N}$. The weight functions $b, a,\sigma$ belong to $C^{\alpha}_{\rm loc}(\Omega)$ satisfying $b(x),a(x)>0$, $\sigma(x)\geq0$, $x\in \Omega$, which may vanish or be singular on the boundary. $g\in C^1((0,\infty),(0,\infty))$ satisfies $\lim_{t\to 0^{+}}g(t)=\infty$. Our results include the existence, uniqueness and the exact boundary asymptotic behavior and global asymptotic behavior of the solution.http://ejde.math.txstate.edu/Volumes/2015/57/abstr.htmlSingular Dirichlet problemKaramata regular variation theoryconvection termboundary asymptotic behaviorglobal asymptotic behavior |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Haitao Wan |
spellingShingle |
Haitao Wan Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term Electronic Journal of Differential Equations Singular Dirichlet problem Karamata regular variation theory convection term boundary asymptotic behavior global asymptotic behavior |
author_facet |
Haitao Wan |
author_sort |
Haitao Wan |
title |
Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term |
title_short |
Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term |
title_full |
Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term |
title_fullStr |
Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term |
title_full_unstemmed |
Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term |
title_sort |
existence and asymptotic behavior of a unique solution to a singular dirichlet boundary-value problem with a convection term |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2015-03-01 |
description |
In this article, we consider the problem
$$
-\Delta u =b(x)g(u)+ \lambda a(x)|\nabla u|^{q}+\sigma(x),\;
u > 0,\; x\in \Omega,\quad u|_{\partial \Omega }= 0
$$
with $\lambda\in\mathbb{R}$, $q\in [0, 2]$ in a smooth bounded domain
$\Omega$ of $\mathbb{R}^{N}$. The weight functions
$b, a,\sigma$ belong to $C^{\alpha}_{\rm loc}(\Omega)$ satisfying
$b(x),a(x)>0$, $\sigma(x)\geq0$, $x\in \Omega$, which may vanish or
be singular on the boundary. $g\in C^1((0,\infty),(0,\infty))$
satisfies $\lim_{t\to 0^{+}}g(t)=\infty$. Our results
include the existence, uniqueness and the exact boundary asymptotic
behavior and global asymptotic behavior of the solution. |
topic |
Singular Dirichlet problem Karamata regular variation theory convection term boundary asymptotic behavior global asymptotic behavior |
url |
http://ejde.math.txstate.edu/Volumes/2015/57/abstr.html |
work_keys_str_mv |
AT haitaowan existenceandasymptoticbehaviorofauniquesolutiontoasingulardirichletboundaryvalueproblemwithaconvectionterm |
_version_ |
1725994207544344576 |