Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term

In this article, we consider the problem $$ -\Delta u =b(x)g(u)+ \lambda a(x)|\nabla u|^{q}+\sigma(x),\; u > 0,\; x\in \Omega,\quad u|_{\partial \Omega }= 0 $$ with $\lambda\in\mathbb{R}$, $q\in [0, 2]$ in a smooth bounded domain $\Omega$ of $\mathbb{R}^{N}$. The weight functions $b, a,\...

Full description

Bibliographic Details
Main Author: Haitao Wan
Format: Article
Language:English
Published: Texas State University 2015-03-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/57/abstr.html
id doaj-1cb829ded8eb4ec9b20e4912707e96e4
record_format Article
spelling doaj-1cb829ded8eb4ec9b20e4912707e96e42020-11-24T21:22:54ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912015-03-01201557,133Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection termHaitao Wan0 Lanzhou Univ., Lanzhou, China In this article, we consider the problem $$ -\Delta u =b(x)g(u)+ \lambda a(x)|\nabla u|^{q}+\sigma(x),\; u > 0,\; x\in \Omega,\quad u|_{\partial \Omega }= 0 $$ with $\lambda\in\mathbb{R}$, $q\in [0, 2]$ in a smooth bounded domain $\Omega$ of $\mathbb{R}^{N}$. The weight functions $b, a,\sigma$ belong to $C^{\alpha}_{\rm loc}(\Omega)$ satisfying $b(x),a(x)>0$, $\sigma(x)\geq0$, $x\in \Omega$, which may vanish or be singular on the boundary. $g\in C^1((0,\infty),(0,\infty))$ satisfies $\lim_{t\to 0^{+}}g(t)=\infty$. Our results include the existence, uniqueness and the exact boundary asymptotic behavior and global asymptotic behavior of the solution.http://ejde.math.txstate.edu/Volumes/2015/57/abstr.htmlSingular Dirichlet problemKaramata regular variation theoryconvection termboundary asymptotic behaviorglobal asymptotic behavior
collection DOAJ
language English
format Article
sources DOAJ
author Haitao Wan
spellingShingle Haitao Wan
Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term
Electronic Journal of Differential Equations
Singular Dirichlet problem
Karamata regular variation theory
convection term
boundary asymptotic behavior
global asymptotic behavior
author_facet Haitao Wan
author_sort Haitao Wan
title Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term
title_short Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term
title_full Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term
title_fullStr Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term
title_full_unstemmed Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term
title_sort existence and asymptotic behavior of a unique solution to a singular dirichlet boundary-value problem with a convection term
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2015-03-01
description In this article, we consider the problem $$ -\Delta u =b(x)g(u)+ \lambda a(x)|\nabla u|^{q}+\sigma(x),\; u > 0,\; x\in \Omega,\quad u|_{\partial \Omega }= 0 $$ with $\lambda\in\mathbb{R}$, $q\in [0, 2]$ in a smooth bounded domain $\Omega$ of $\mathbb{R}^{N}$. The weight functions $b, a,\sigma$ belong to $C^{\alpha}_{\rm loc}(\Omega)$ satisfying $b(x),a(x)>0$, $\sigma(x)\geq0$, $x\in \Omega$, which may vanish or be singular on the boundary. $g\in C^1((0,\infty),(0,\infty))$ satisfies $\lim_{t\to 0^{+}}g(t)=\infty$. Our results include the existence, uniqueness and the exact boundary asymptotic behavior and global asymptotic behavior of the solution.
topic Singular Dirichlet problem
Karamata regular variation theory
convection term
boundary asymptotic behavior
global asymptotic behavior
url http://ejde.math.txstate.edu/Volumes/2015/57/abstr.html
work_keys_str_mv AT haitaowan existenceandasymptoticbehaviorofauniquesolutiontoasingulardirichletboundaryvalueproblemwithaconvectionterm
_version_ 1725994207544344576