The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformality

Abstract In the paper, we study the $$\Upsilon (1S)$$ Υ(1S) leptonic decay width $$\Gamma (\Upsilon (1S)\rightarrow \ell ^+\ell ^-)$$ Γ(Υ(1S)→ℓ+ℓ-) by using the principle of maximum conformality (PMC) scale-setting approach. The PMC adopts the renormalization group equation to set the correct moment...

Full description

Bibliographic Details
Main Authors: Xu-Dong Huang, Xing-Gang Wu, Jun Zeng, Qing Yu, Jian-Ming Shen
Format: Article
Language:English
Published: SpringerOpen 2019-08-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-019-7158-9
id doaj-1cb563d8595845f682eb98833e61e589
record_format Article
spelling doaj-1cb563d8595845f682eb98833e61e5892020-11-25T03:10:22ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522019-08-017981610.1140/epjc/s10052-019-7158-9The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformalityXu-Dong Huang0Xing-Gang Wu1Jun Zeng2Qing Yu3Jian-Ming Shen4Department of Physics, Chongqing UniversityDepartment of Physics, Chongqing UniversityDepartment of Physics, Chongqing UniversityDepartment of Physics, Chongqing UniversitySchool of Physics and Electronics, Hunan UniversityAbstract In the paper, we study the $$\Upsilon (1S)$$ Υ(1S) leptonic decay width $$\Gamma (\Upsilon (1S)\rightarrow \ell ^+\ell ^-)$$ Γ(Υ(1S)→ℓ+ℓ-) by using the principle of maximum conformality (PMC) scale-setting approach. The PMC adopts the renormalization group equation to set the correct momentum flow of the process, whose value is independent to the choice of the renormalization scale and its prediction thus avoids the conventional renormalization scale ambiguities. Using the known next-to-next-to-next-to-leading order perturbative series together with the PMC single scale-setting approach, we do obtain a renormalization scale independent decay width, $$\Gamma _{\Upsilon (1S) \rightarrow e^+ e^-} = 1.262^{+0.195}_{-0.175}$$ ΓΥ(1S)→e+e-=1.262-0.175+0.195 keV, where the error is squared average of those from $$\alpha _s(M_{Z})=0.1181\pm 0.0011$$ αs(MZ)=0.1181±0.0011 , $$m_b=4.93\pm 0.03$$ mb=4.93±0.03 GeV and the choices of factorization scales within $$\pm 10\%$$ ±10% of their central values. To compare with the result under conventional scale-setting approach, this decay width agrees with the experimental value within errors, indicating the importance of a proper scale-setting approach.http://link.springer.com/article/10.1140/epjc/s10052-019-7158-9
collection DOAJ
language English
format Article
sources DOAJ
author Xu-Dong Huang
Xing-Gang Wu
Jun Zeng
Qing Yu
Jian-Ming Shen
spellingShingle Xu-Dong Huang
Xing-Gang Wu
Jun Zeng
Qing Yu
Jian-Ming Shen
The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformality
European Physical Journal C: Particles and Fields
author_facet Xu-Dong Huang
Xing-Gang Wu
Jun Zeng
Qing Yu
Jian-Ming Shen
author_sort Xu-Dong Huang
title The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformality
title_short The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformality
title_full The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformality
title_fullStr The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformality
title_full_unstemmed The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformality
title_sort $$\upsilon (1s)$$ υ(1s) leptonic decay using the principle of maximum conformality
publisher SpringerOpen
series European Physical Journal C: Particles and Fields
issn 1434-6044
1434-6052
publishDate 2019-08-01
description Abstract In the paper, we study the $$\Upsilon (1S)$$ Υ(1S) leptonic decay width $$\Gamma (\Upsilon (1S)\rightarrow \ell ^+\ell ^-)$$ Γ(Υ(1S)→ℓ+ℓ-) by using the principle of maximum conformality (PMC) scale-setting approach. The PMC adopts the renormalization group equation to set the correct momentum flow of the process, whose value is independent to the choice of the renormalization scale and its prediction thus avoids the conventional renormalization scale ambiguities. Using the known next-to-next-to-next-to-leading order perturbative series together with the PMC single scale-setting approach, we do obtain a renormalization scale independent decay width, $$\Gamma _{\Upsilon (1S) \rightarrow e^+ e^-} = 1.262^{+0.195}_{-0.175}$$ ΓΥ(1S)→e+e-=1.262-0.175+0.195 keV, where the error is squared average of those from $$\alpha _s(M_{Z})=0.1181\pm 0.0011$$ αs(MZ)=0.1181±0.0011 , $$m_b=4.93\pm 0.03$$ mb=4.93±0.03 GeV and the choices of factorization scales within $$\pm 10\%$$ ±10% of their central values. To compare with the result under conventional scale-setting approach, this decay width agrees with the experimental value within errors, indicating the importance of a proper scale-setting approach.
url http://link.springer.com/article/10.1140/epjc/s10052-019-7158-9
work_keys_str_mv AT xudonghuang theupsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality
AT xinggangwu theupsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality
AT junzeng theupsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality
AT qingyu theupsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality
AT jianmingshen theupsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality
AT xudonghuang upsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality
AT xinggangwu upsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality
AT junzeng upsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality
AT qingyu upsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality
AT jianmingshen upsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality
_version_ 1724659011643506688