The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformality
Abstract In the paper, we study the $$\Upsilon (1S)$$ Υ(1S) leptonic decay width $$\Gamma (\Upsilon (1S)\rightarrow \ell ^+\ell ^-)$$ Γ(Υ(1S)→ℓ+ℓ-) by using the principle of maximum conformality (PMC) scale-setting approach. The PMC adopts the renormalization group equation to set the correct moment...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-08-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | http://link.springer.com/article/10.1140/epjc/s10052-019-7158-9 |
id |
doaj-1cb563d8595845f682eb98833e61e589 |
---|---|
record_format |
Article |
spelling |
doaj-1cb563d8595845f682eb98833e61e5892020-11-25T03:10:22ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522019-08-017981610.1140/epjc/s10052-019-7158-9The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformalityXu-Dong Huang0Xing-Gang Wu1Jun Zeng2Qing Yu3Jian-Ming Shen4Department of Physics, Chongqing UniversityDepartment of Physics, Chongqing UniversityDepartment of Physics, Chongqing UniversityDepartment of Physics, Chongqing UniversitySchool of Physics and Electronics, Hunan UniversityAbstract In the paper, we study the $$\Upsilon (1S)$$ Υ(1S) leptonic decay width $$\Gamma (\Upsilon (1S)\rightarrow \ell ^+\ell ^-)$$ Γ(Υ(1S)→ℓ+ℓ-) by using the principle of maximum conformality (PMC) scale-setting approach. The PMC adopts the renormalization group equation to set the correct momentum flow of the process, whose value is independent to the choice of the renormalization scale and its prediction thus avoids the conventional renormalization scale ambiguities. Using the known next-to-next-to-next-to-leading order perturbative series together with the PMC single scale-setting approach, we do obtain a renormalization scale independent decay width, $$\Gamma _{\Upsilon (1S) \rightarrow e^+ e^-} = 1.262^{+0.195}_{-0.175}$$ ΓΥ(1S)→e+e-=1.262-0.175+0.195 keV, where the error is squared average of those from $$\alpha _s(M_{Z})=0.1181\pm 0.0011$$ αs(MZ)=0.1181±0.0011 , $$m_b=4.93\pm 0.03$$ mb=4.93±0.03 GeV and the choices of factorization scales within $$\pm 10\%$$ ±10% of their central values. To compare with the result under conventional scale-setting approach, this decay width agrees with the experimental value within errors, indicating the importance of a proper scale-setting approach.http://link.springer.com/article/10.1140/epjc/s10052-019-7158-9 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xu-Dong Huang Xing-Gang Wu Jun Zeng Qing Yu Jian-Ming Shen |
spellingShingle |
Xu-Dong Huang Xing-Gang Wu Jun Zeng Qing Yu Jian-Ming Shen The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformality European Physical Journal C: Particles and Fields |
author_facet |
Xu-Dong Huang Xing-Gang Wu Jun Zeng Qing Yu Jian-Ming Shen |
author_sort |
Xu-Dong Huang |
title |
The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformality |
title_short |
The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformality |
title_full |
The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformality |
title_fullStr |
The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformality |
title_full_unstemmed |
The $$\Upsilon (1S)$$ Υ(1S) leptonic decay using the principle of maximum conformality |
title_sort |
$$\upsilon (1s)$$ υ(1s) leptonic decay using the principle of maximum conformality |
publisher |
SpringerOpen |
series |
European Physical Journal C: Particles and Fields |
issn |
1434-6044 1434-6052 |
publishDate |
2019-08-01 |
description |
Abstract In the paper, we study the $$\Upsilon (1S)$$ Υ(1S) leptonic decay width $$\Gamma (\Upsilon (1S)\rightarrow \ell ^+\ell ^-)$$ Γ(Υ(1S)→ℓ+ℓ-) by using the principle of maximum conformality (PMC) scale-setting approach. The PMC adopts the renormalization group equation to set the correct momentum flow of the process, whose value is independent to the choice of the renormalization scale and its prediction thus avoids the conventional renormalization scale ambiguities. Using the known next-to-next-to-next-to-leading order perturbative series together with the PMC single scale-setting approach, we do obtain a renormalization scale independent decay width, $$\Gamma _{\Upsilon (1S) \rightarrow e^+ e^-} = 1.262^{+0.195}_{-0.175}$$ ΓΥ(1S)→e+e-=1.262-0.175+0.195 keV, where the error is squared average of those from $$\alpha _s(M_{Z})=0.1181\pm 0.0011$$ αs(MZ)=0.1181±0.0011 , $$m_b=4.93\pm 0.03$$ mb=4.93±0.03 GeV and the choices of factorization scales within $$\pm 10\%$$ ±10% of their central values. To compare with the result under conventional scale-setting approach, this decay width agrees with the experimental value within errors, indicating the importance of a proper scale-setting approach. |
url |
http://link.springer.com/article/10.1140/epjc/s10052-019-7158-9 |
work_keys_str_mv |
AT xudonghuang theupsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality AT xinggangwu theupsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality AT junzeng theupsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality AT qingyu theupsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality AT jianmingshen theupsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality AT xudonghuang upsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality AT xinggangwu upsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality AT junzeng upsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality AT qingyu upsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality AT jianmingshen upsilon1sy1sleptonicdecayusingtheprincipleofmaximumconformality |
_version_ |
1724659011643506688 |