Cone complementarity approach for dynamic analysis of multiple pendulums
The multibody system dynamics approach allows describing equations of motion for a dynamic system in a straightforward manner. This approach can be applied to a wide variety of applications that consist of interconnected components which may be rigid or deformable. Even though there are a number of...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2019-06-01
|
Series: | Advances in Mechanical Engineering |
Online Access: | https://doi.org/10.1177/1687814019856748 |
Summary: | The multibody system dynamics approach allows describing equations of motion for a dynamic system in a straightforward manner. This approach can be applied to a wide variety of applications that consist of interconnected components which may be rigid or deformable. Even though there are a number of applications in multibody dynamics, the contact description within multibody dynamics still remains challenging. A user of the multibody approach may face the problem of thousands or millions of contacts between particles and bodies. The objective of this article is to demonstrate a computationally straightforward approach for a planar case with multiple contacts. To this end, this article introduces a planar approach based on the cone complementarity problem and applies it to a practical problem of granular chains. |
---|---|
ISSN: | 1687-8140 |