An Optimal Two Bands Ratio Model to Monitor Chlorophyll-a in Urban Lake Using Landsat 8 Data

Chlorophyll-a (Chl-a) estimation in inland waters is an essential environmental issue. This study aimed to identify a band ratio model for Chl-a simulation using Landsat 8 OLI data and in situ Chl-a measuring in Lake Donghu. The band B1and B2, respectively at the wavelength of 443 nm and 483 nm, in...

Full description

Bibliographic Details
Main Authors: Chen Qi, Huang Mutao, Bai Kaiyuan, Li Xiaojuan
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/03/e3sconf_arfee2020_02003.pdf
Description
Summary:Chlorophyll-a (Chl-a) estimation in inland waters is an essential environmental issue. This study aimed to identify a band ratio model for Chl-a simulation using Landsat 8 OLI data and in situ Chl-a measuring in Lake Donghu. The band B1and B2, respectively at the wavelength of 443 nm and 483 nm, in the band ratio model [B1/B2] performed best in Chl-a estimation with the R2 of 0.6215. K-means cluster analysis based on water quality indexes (Chl-a, pH, DO, TN, TP, COD, Turbidity) was conducted to further improve the accuracy of inversion model. The MAPE of the optimal [B1/B2] algorithm has decreased by 4.81% and 39.87% respectively for 17 December 2017 (R2=0.7669, N=42) and 26 March 2018 (R2=0.9156, N=45).
ISSN:2267-1242