Single Gaussian Chaotic Neuron: Numerical Study and Implementation in an Embedded System
Artificial Gaussian neurons are very common structures of artificial neural networks like radial basis function. These artificial neurons use a Gaussian activation function that includes two parameters called the center of mass (cm) and sensibility factor (λ). Changes on these parameters determine t...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2013/318758 |
id |
doaj-1ca0f9dfa6ac41d08e22e288505fefaa |
---|---|
record_format |
Article |
spelling |
doaj-1ca0f9dfa6ac41d08e22e288505fefaa2020-11-25T00:10:43ZengHindawi LimitedDiscrete Dynamics in Nature and Society1026-02261607-887X2013-01-01201310.1155/2013/318758318758Single Gaussian Chaotic Neuron: Numerical Study and Implementation in an Embedded SystemLuis M. Torres-Treviño0Angel Rodríguez-Liñán1Luis González-Estrada2Gustavo González-Sanmiguel3Universidad Autónoma de Nuevo León, UANL, FIME, Avenida Universidad S/N Ciudad Universitaria, 66451 San Nicolás de los Garza Nuevo León, NL, MexicoUniversidad Autónoma de Nuevo León, UANL, FIME, Avenida Universidad S/N Ciudad Universitaria, 66451 San Nicolás de los Garza Nuevo León, NL, MexicoUniversidad Autónoma de Nuevo León, UANL, FIME, Avenida Universidad S/N Ciudad Universitaria, 66451 San Nicolás de los Garza Nuevo León, NL, MexicoUniversidad Autónoma de Nuevo León, UANL, FIME, Avenida Universidad S/N Ciudad Universitaria, 66451 San Nicolás de los Garza Nuevo León, NL, MexicoArtificial Gaussian neurons are very common structures of artificial neural networks like radial basis function. These artificial neurons use a Gaussian activation function that includes two parameters called the center of mass (cm) and sensibility factor (λ). Changes on these parameters determine the behavior of the neuron. When the neuron has a feedback output, complex chaotic behavior is displayed. This paper presents a study and implementation of this particular neuron. Stability of fixed points, bifurcation diagrams, and Lyapunov exponents help to determine the dynamical nature of the neuron, and its implementation on embedded system illustrates preliminary results toward embedded chaos computation.http://dx.doi.org/10.1155/2013/318758 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Luis M. Torres-Treviño Angel Rodríguez-Liñán Luis González-Estrada Gustavo González-Sanmiguel |
spellingShingle |
Luis M. Torres-Treviño Angel Rodríguez-Liñán Luis González-Estrada Gustavo González-Sanmiguel Single Gaussian Chaotic Neuron: Numerical Study and Implementation in an Embedded System Discrete Dynamics in Nature and Society |
author_facet |
Luis M. Torres-Treviño Angel Rodríguez-Liñán Luis González-Estrada Gustavo González-Sanmiguel |
author_sort |
Luis M. Torres-Treviño |
title |
Single Gaussian Chaotic Neuron: Numerical Study and Implementation in an Embedded System |
title_short |
Single Gaussian Chaotic Neuron: Numerical Study and Implementation in an Embedded System |
title_full |
Single Gaussian Chaotic Neuron: Numerical Study and Implementation in an Embedded System |
title_fullStr |
Single Gaussian Chaotic Neuron: Numerical Study and Implementation in an Embedded System |
title_full_unstemmed |
Single Gaussian Chaotic Neuron: Numerical Study and Implementation in an Embedded System |
title_sort |
single gaussian chaotic neuron: numerical study and implementation in an embedded system |
publisher |
Hindawi Limited |
series |
Discrete Dynamics in Nature and Society |
issn |
1026-0226 1607-887X |
publishDate |
2013-01-01 |
description |
Artificial Gaussian neurons are very common structures of artificial neural networks like radial basis function. These artificial neurons use a Gaussian activation function that includes two parameters called the center of mass (cm) and sensibility factor (λ). Changes on these parameters determine the behavior of the neuron. When the neuron has a feedback output, complex chaotic behavior is displayed. This paper presents a study and implementation of this particular neuron. Stability of fixed points, bifurcation diagrams, and Lyapunov exponents help to determine the dynamical nature of the neuron, and its implementation on embedded system illustrates preliminary results toward embedded chaos computation. |
url |
http://dx.doi.org/10.1155/2013/318758 |
work_keys_str_mv |
AT luismtorrestrevino singlegaussianchaoticneuronnumericalstudyandimplementationinanembeddedsystem AT angelrodriguezlinan singlegaussianchaoticneuronnumericalstudyandimplementationinanembeddedsystem AT luisgonzalezestrada singlegaussianchaoticneuronnumericalstudyandimplementationinanembeddedsystem AT gustavogonzalezsanmiguel singlegaussianchaoticneuronnumericalstudyandimplementationinanembeddedsystem |
_version_ |
1725407483506196480 |