PAC-Bayes Bounds on Variational Tempered Posteriors for Markov Models

Datasets displaying temporal dependencies abound in science and engineering applications, with Markov models representing a simplified and popular view of the temporal dependence structure. In this paper, we consider Bayesian settings that place prior distributions over the parameters of the transit...

Full description

Bibliographic Details
Main Authors: Imon Banerjee, Vinayak A. Rao, Harsha Honnappa
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/3/313
Description
Summary:Datasets displaying temporal dependencies abound in science and engineering applications, with Markov models representing a simplified and popular view of the temporal dependence structure. In this paper, we consider Bayesian settings that place prior distributions over the parameters of the transition kernel of a Markov model, and seek to characterize the resulting, typically intractable, posterior distributions. We present a Probably Approximately Correct (PAC)-Bayesian analysis of variational Bayes (VB) approximations to tempered Bayesian posterior distributions, bounding the model risk of the VB approximations. Tempered posteriors are known to be robust to model misspecification, and their variational approximations do not suffer the usual problems of over confident approximations. Our results tie the risk bounds to the mixing and ergodic properties of the Markov data generating model. We illustrate the PAC-Bayes bounds through a number of example Markov models, and also consider the situation where the Markov model is misspecified.
ISSN:1099-4300