Accurate Methods for Signal Processing of Distorted Waveforms in Power Systems

A primary problem in waveform distortion assessment in power systems is to examine ways to reduce the effects of spectral leakage. In the framework of DFT approaches, line frequency synchronization techniques or algorithms to compensate for desynchronization are necessary; alternative approaches suc...

Full description

Bibliographic Details
Main Authors: A. Testa, R. Langella, G. Carpinelli, A. Bracale
Format: Article
Language:English
Published: SpringerOpen 2007-01-01
Series:EURASIP Journal on Advances in Signal Processing
Online Access:http://dx.doi.org/10.1155/2007/92191
Description
Summary:A primary problem in waveform distortion assessment in power systems is to examine ways to reduce the effects of spectral leakage. In the framework of DFT approaches, line frequency synchronization techniques or algorithms to compensate for desynchronization are necessary; alternative approaches such as those based on the Prony and ESPRIT methods are not sensitive to desynchronization, but they often require significant computational burden. In this paper, the signal processing aspects of the problem are considered; different proposals by the same authors regarding DFT-, Prony-, and ESPRIT-based advanced methods are reviewed and compared in terms of their accuracy and computational efforts. The results of several numerical experiments are reported and analysed; some of them are in accordance with IEC Standards, while others use more open scenarios.
ISSN:1687-6172
1687-6180