A new method for global optimization
This paper presents a new method for global optimization. We use exact quadratic regularization for the transformation of the multimodal problems to a problem of a maximum norm vector on a convex set. Quadratic regularization often allows you to convert a multimodal problem into a unimodal problem....
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2021-08-01
|
Series: | ESAIM: Proceedings and Surveys |
Online Access: | https://www.esaim-proc.org/articles/proc/pdf/2021/02/proc2107111.pdf |
Summary: | This paper presents a new method for global optimization. We use exact quadratic regularization for the transformation of the multimodal problems to a problem of a maximum norm vector on a convex set. Quadratic regularization often allows you to convert a multimodal problem into a unimodal problem. For this, we use the shift of the feasible region along the bisector of the positive orthant. We use only local search (primal-dual interior point method) and a dichotomy method for search of a global extremum in the multimodal problems. The comparative numerical experiments have shown that this method is very efficient and promising. |
---|---|
ISSN: | 2267-3059 |