Antimicrobial activity of Antrodia camphorata extracts against oral bacteria.

Antrodia camphorata (A. camphorata) is a unique, endemic and extremely rare mushroom species native to Taiwan, and both crude extracts of and purified chemical compounds from A. camphorata have been reported to have a variety of significant beneficial effects, such as anti-tumor and anti-inflammator...

Full description

Bibliographic Details
Main Authors: Hsiu-Man Lien, Chin-Jui Tseng, Chao-Lu Huang, Yu-Ting Lin, Chia-Chang Chen, Ya-Yun Lai
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4140745?pdf=render
Description
Summary:Antrodia camphorata (A. camphorata) is a unique, endemic and extremely rare mushroom species native to Taiwan, and both crude extracts of and purified chemical compounds from A. camphorata have been reported to have a variety of significant beneficial effects, such as anti-tumor and anti-inflammatory activity. However, reports on the effects of A. camphorata against dental pathogens have been limited. Oral health is now recognized as important for overall general health, including conditions such as dental caries, periodontal disease and rheumatoid arthritis. Streptococcus mutans (S. mutans) and Porphyromonas gingivalis (P. gingivalis) are the most common bacteria associated with dental plaque and periodontopathic diseases, respectively. Thus, our study examined the ability of five various crude extracts of A. camphorata to inhibit the growth of dental bacteria and anti-adherence in vitro. Among the extracts, the ethanol, ethyl acetate and chloroform extracts exhibited the lowest MICs against P. gingivalis and S. mutans (MIC = 4∼16 µg/mL). The MIC of the aqueous extract was greater than 2048 µg/mL against both P. gingivalis and S. mutans. In vitro adherence of S. mutans was significantly inhibited by the addition of either the ethyl acetate extract or chloroform extract (MIC = 16∼24 µg/mL), while the ethanol extract (MIC = 32∼64 µg/mL) exhibited moderate inhibitory activity. Based on the result of this study, the ethyl acetate and chloroform extracts of A. camphorata may be good candidates for oral hygiene agents to control dental caries and periodontopathic conditions.
ISSN:1932-6203