Stimulation of AMPK Prevents Diabetes-Induced Photoreceptor Cell Degeneration

Diabetic retinopathy (DR) is a kind of severe retinal neurodegeneration. The advanced glycation end products (AGEs) affect autophagy, and mitochondrial function is involved in DR. Adenosine-activated protein kinase (AMPK) is an important metabolic sensor that can regulate energy homeostasis in cells...

Full description

Bibliographic Details
Main Authors: Shiyu Song, Shuyin Bao, Chenghong Zhang, Jinwei Zhang, Jiajun Lv, Xiaoyu Li, Maryam Chudhary, Xiang Ren, Li Kong
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Oxidative Medicine and Cellular Longevity
Online Access:http://dx.doi.org/10.1155/2021/5587340
Description
Summary:Diabetic retinopathy (DR) is a kind of severe retinal neurodegeneration. The advanced glycation end products (AGEs) affect autophagy, and mitochondrial function is involved in DR. Adenosine-activated protein kinase (AMPK) is an important metabolic sensor that can regulate energy homeostasis in cells. However, the effect of AMPK in DR is still not fully understood. In this study, we investigated the effect of AMPK on diabetes-induced photoreceptor cell degeneration. In vivo, a diabetic mouse model was established by streptozotocin (STZ) injection. Haematoxylin-eosin (HE) staining was used to observe retinal morphology and measure the thicknesses of different layers in the retina. Electroretinogram (ERG) was used to evaluate retinal function. In vitro, 661w cells were treated with AGEs with/without an AMPK agonist (metformin) or AMPK inhibitor (compound C). Flow cytometry and CCK-8 assays were used to analyse apoptosis. Mitochondrial membrane potential was analysed by JC-1. Western blotting and qRT-PCR were used to examine the expression of related proteins and genes, respectively. The wave amplitude and the thickness of the outer nuclear layer were decreased in diabetic mice. The expression of rhodopsin and opsin was also decreased in diabetic mice. In vitro, the percentage of apoptotic cells was increased, the expression of the apoptosis-related protein Bax was increased, and Bcl-2 was decreased after AGE treatment in 661w cells. The expression of the autophagy-related protein LC3 was decreased, and p62 was increased. The mitochondrial-related gene expression and membrane potential were decreased, and mitochondrial morphology was abnormal, as observed by TEM. However, AMPK stimulation ameliorated this effect. These results indicate that AMPK stimulation can delay diabetes-induced photoreceptor degeneration by regulating autophagy and mitochondrial function.
ISSN:1942-0994