Radar Application: Stacking Multiple Classifiers for Human Walking Detection Using Micro-Doppler Signals

We propose a stacking method for ensemble learning to distinguish micro-Doppler signals generated by human walking from background noises using radar sensors. We collected micro-Doppler signals caused by four types of background noise (line of sight (LoS), fan, snow and rain) and additionally consid...

Full description

Bibliographic Details
Main Authors: Jihoon Kwon, Nojun Kwak
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/17/3534
Description
Summary:We propose a stacking method for ensemble learning to distinguish micro-Doppler signals generated by human walking from background noises using radar sensors. We collected micro-Doppler signals caused by four types of background noise (line of sight (LoS), fan, snow and rain) and additionally considered micro-Doppler signals caused by human walking combined with these four types of background noise. We firstly verified the effectiveness of a fully connected deep neural network (DNN) to classify 8 types of signals. The average accuracy was 88.79% for the test set. Then, we propose a stacking method to combine two base classifiers of different structures. The average accuracy of the stacking method on the test set was 91.43%. Lastly, we designed a modified stacking method to reuse feature information stored at the previous stage and the average test accuracy increased to 95.62%. This result shows that the proposed stacking methods can be an effective approach to improve classifier’s accuracy in recognizing human walking using micro-Doppler signals with background noise.
ISSN:2076-3417