The variety of dual mock-Lie algebras

We classify all complex 7- and 8-dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex 9-dimensional dual mock-Lie algebras.

Bibliographic Details
Main Authors: Camacho Luisa M., Kaygorodov Ivan, Lopatkin Viktor, Salim Mohamed A.
Format: Article
Language:English
Published: Sciendo 2020-09-01
Series:Communications in Mathematics
Subjects:
Online Access:http://www.degruyter.com/view/j/cm.2020.28.issue-2/cm-2020-0019/cm-2020-0019.xml?format=INT
id doaj-1c4f22a89be54b8eb875cb1f46e18e3c
record_format Article
spelling doaj-1c4f22a89be54b8eb875cb1f46e18e3c2020-11-25T04:06:09ZengSciendoCommunications in Mathematics2336-12982020-09-0128216117810.2478/cm-2020-0019cm-2020-0019The variety of dual mock-Lie algebrasCamacho Luisa M.0Kaygorodov Ivan1Lopatkin Viktor2Salim Mohamed A.3E.T.S.I. Informática, Dpto. Matemática Aplicada I, Universidad de Sevilla Avda. Reina Mercedes s/n, 41012Sevilla, SpainCMCC, Universidade Federal do ABC, Santo André, BrazilAv. dos Estados, 5001 – Bangú, Santo André – SP, 09210-580Laboratory of Modern Algebra and Applications, St. Petersburg State University and St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, RussiaDeptartment of Mathematical Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab EmiratesWe classify all complex 7- and 8-dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex 9-dimensional dual mock-Lie algebras.http://www.degruyter.com/view/j/cm.2020.28.issue-2/cm-2020-0019/cm-2020-0019.xml?format=INTnilpotent algebramock-lie algebradual mock-lie algebraanticommutative algebraalgebraic classificationgeometric classificationcentral extensiondegeneration17a3014d0614l30
collection DOAJ
language English
format Article
sources DOAJ
author Camacho Luisa M.
Kaygorodov Ivan
Lopatkin Viktor
Salim Mohamed A.
spellingShingle Camacho Luisa M.
Kaygorodov Ivan
Lopatkin Viktor
Salim Mohamed A.
The variety of dual mock-Lie algebras
Communications in Mathematics
nilpotent algebra
mock-lie algebra
dual mock-lie algebra
anticommutative algebra
algebraic classification
geometric classification
central extension
degeneration
17a30
14d06
14l30
author_facet Camacho Luisa M.
Kaygorodov Ivan
Lopatkin Viktor
Salim Mohamed A.
author_sort Camacho Luisa M.
title The variety of dual mock-Lie algebras
title_short The variety of dual mock-Lie algebras
title_full The variety of dual mock-Lie algebras
title_fullStr The variety of dual mock-Lie algebras
title_full_unstemmed The variety of dual mock-Lie algebras
title_sort variety of dual mock-lie algebras
publisher Sciendo
series Communications in Mathematics
issn 2336-1298
publishDate 2020-09-01
description We classify all complex 7- and 8-dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex 9-dimensional dual mock-Lie algebras.
topic nilpotent algebra
mock-lie algebra
dual mock-lie algebra
anticommutative algebra
algebraic classification
geometric classification
central extension
degeneration
17a30
14d06
14l30
url http://www.degruyter.com/view/j/cm.2020.28.issue-2/cm-2020-0019/cm-2020-0019.xml?format=INT
work_keys_str_mv AT camacholuisam thevarietyofdualmockliealgebras
AT kaygorodovivan thevarietyofdualmockliealgebras
AT lopatkinviktor thevarietyofdualmockliealgebras
AT salimmohameda thevarietyofdualmockliealgebras
AT camacholuisam varietyofdualmockliealgebras
AT kaygorodovivan varietyofdualmockliealgebras
AT lopatkinviktor varietyofdualmockliealgebras
AT salimmohameda varietyofdualmockliealgebras
_version_ 1724432195396829184