The variety of dual mock-Lie algebras
We classify all complex 7- and 8-dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex 9-dimensional dual mock-Lie algebras.
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2020-09-01
|
Series: | Communications in Mathematics |
Subjects: | |
Online Access: | http://www.degruyter.com/view/j/cm.2020.28.issue-2/cm-2020-0019/cm-2020-0019.xml?format=INT |
id |
doaj-1c4f22a89be54b8eb875cb1f46e18e3c |
---|---|
record_format |
Article |
spelling |
doaj-1c4f22a89be54b8eb875cb1f46e18e3c2020-11-25T04:06:09ZengSciendoCommunications in Mathematics2336-12982020-09-0128216117810.2478/cm-2020-0019cm-2020-0019The variety of dual mock-Lie algebrasCamacho Luisa M.0Kaygorodov Ivan1Lopatkin Viktor2Salim Mohamed A.3E.T.S.I. Informática, Dpto. Matemática Aplicada I, Universidad de Sevilla Avda. Reina Mercedes s/n, 41012Sevilla, SpainCMCC, Universidade Federal do ABC, Santo André, BrazilAv. dos Estados, 5001 – Bangú, Santo André – SP, 09210-580Laboratory of Modern Algebra and Applications, St. Petersburg State University and St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, RussiaDeptartment of Mathematical Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab EmiratesWe classify all complex 7- and 8-dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex 9-dimensional dual mock-Lie algebras.http://www.degruyter.com/view/j/cm.2020.28.issue-2/cm-2020-0019/cm-2020-0019.xml?format=INTnilpotent algebramock-lie algebradual mock-lie algebraanticommutative algebraalgebraic classificationgeometric classificationcentral extensiondegeneration17a3014d0614l30 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Camacho Luisa M. Kaygorodov Ivan Lopatkin Viktor Salim Mohamed A. |
spellingShingle |
Camacho Luisa M. Kaygorodov Ivan Lopatkin Viktor Salim Mohamed A. The variety of dual mock-Lie algebras Communications in Mathematics nilpotent algebra mock-lie algebra dual mock-lie algebra anticommutative algebra algebraic classification geometric classification central extension degeneration 17a30 14d06 14l30 |
author_facet |
Camacho Luisa M. Kaygorodov Ivan Lopatkin Viktor Salim Mohamed A. |
author_sort |
Camacho Luisa M. |
title |
The variety of dual mock-Lie algebras |
title_short |
The variety of dual mock-Lie algebras |
title_full |
The variety of dual mock-Lie algebras |
title_fullStr |
The variety of dual mock-Lie algebras |
title_full_unstemmed |
The variety of dual mock-Lie algebras |
title_sort |
variety of dual mock-lie algebras |
publisher |
Sciendo |
series |
Communications in Mathematics |
issn |
2336-1298 |
publishDate |
2020-09-01 |
description |
We classify all complex 7- and 8-dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex 9-dimensional dual mock-Lie algebras. |
topic |
nilpotent algebra mock-lie algebra dual mock-lie algebra anticommutative algebra algebraic classification geometric classification central extension degeneration 17a30 14d06 14l30 |
url |
http://www.degruyter.com/view/j/cm.2020.28.issue-2/cm-2020-0019/cm-2020-0019.xml?format=INT |
work_keys_str_mv |
AT camacholuisam thevarietyofdualmockliealgebras AT kaygorodovivan thevarietyofdualmockliealgebras AT lopatkinviktor thevarietyofdualmockliealgebras AT salimmohameda thevarietyofdualmockliealgebras AT camacholuisam varietyofdualmockliealgebras AT kaygorodovivan varietyofdualmockliealgebras AT lopatkinviktor varietyofdualmockliealgebras AT salimmohameda varietyofdualmockliealgebras |
_version_ |
1724432195396829184 |