Reproducing Kernels and Variable Bandwidth
We show that a modulation space of type () is a reproducing kernel Hilbert space (RKHS). In particular, we explore the special cases of variable bandwidth spaces Aceska and Feichtinger (2011) with a suitably chosen weight to provide strong enough decay in the frequency direction. The reproducing ke...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2012-01-01
|
Series: | Journal of Function Spaces and Applications |
Online Access: | http://dx.doi.org/10.1155/2012/469341 |
id |
doaj-1c4c7beae3984325aecd2027429f2419 |
---|---|
record_format |
Article |
spelling |
doaj-1c4c7beae3984325aecd2027429f24192020-11-24T22:50:15ZengHindawi LimitedJournal of Function Spaces and Applications0972-68021758-49652012-01-01201210.1155/2012/469341469341Reproducing Kernels and Variable BandwidthR. Aceska0H. G. Feichtinger1Faculty of Mechanical Engineering, Ss. Cyril and Methodius University, Karposh II b.b., 1000 Skopje, MacedoniaFaculty of Mathematics, NuHAG, University of Vienna, Nordbergstrasse 15, 1090 Vienna, AustriaWe show that a modulation space of type () is a reproducing kernel Hilbert space (RKHS). In particular, we explore the special cases of variable bandwidth spaces Aceska and Feichtinger (2011) with a suitably chosen weight to provide strong enough decay in the frequency direction. The reproducing kernel property is valid even if () does not coincide with any of the classical Sobolev spaces because unbounded bandwidth (globally) is allowed. The reproducing kernel will be described explicitly.http://dx.doi.org/10.1155/2012/469341 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
R. Aceska H. G. Feichtinger |
spellingShingle |
R. Aceska H. G. Feichtinger Reproducing Kernels and Variable Bandwidth Journal of Function Spaces and Applications |
author_facet |
R. Aceska H. G. Feichtinger |
author_sort |
R. Aceska |
title |
Reproducing Kernels and Variable Bandwidth |
title_short |
Reproducing Kernels and Variable Bandwidth |
title_full |
Reproducing Kernels and Variable Bandwidth |
title_fullStr |
Reproducing Kernels and Variable Bandwidth |
title_full_unstemmed |
Reproducing Kernels and Variable Bandwidth |
title_sort |
reproducing kernels and variable bandwidth |
publisher |
Hindawi Limited |
series |
Journal of Function Spaces and Applications |
issn |
0972-6802 1758-4965 |
publishDate |
2012-01-01 |
description |
We show that a modulation space of type () is a reproducing kernel Hilbert space (RKHS). In particular, we explore the special cases of variable bandwidth spaces Aceska and Feichtinger (2011) with a suitably chosen weight to provide strong enough decay in the frequency direction. The reproducing kernel property is valid even if
() does not coincide with any of the classical Sobolev spaces because unbounded bandwidth (globally) is allowed. The reproducing kernel will be described explicitly. |
url |
http://dx.doi.org/10.1155/2012/469341 |
work_keys_str_mv |
AT raceska reproducingkernelsandvariablebandwidth AT hgfeichtinger reproducingkernelsandvariablebandwidth |
_version_ |
1725673264306454528 |