Reflection Negative Kernels and Fractional Brownian Motion

In this article we study the connection of fractional Brownian motion, representation theory and reflection positivity in quantum physics. We introduce and study reflection positivity for affine isometric actions of a Lie group on a Hilbert space E and show in particular that fractional Brownian...

Full description

Bibliographic Details
Main Authors: Palle E. T. Jorgensen, Karl-Hermann Neeb, Gestur Ólafsson
Format: Article
Language:English
Published: MDPI AG 2018-06-01
Series:Symmetry
Subjects:
Online Access:http://www.mdpi.com/2073-8994/10/6/191
id doaj-1c456c6e8f3e4905b37793ce1a3a5b7a
record_format Article
spelling doaj-1c456c6e8f3e4905b37793ce1a3a5b7a2020-11-25T00:26:35ZengMDPI AGSymmetry2073-89942018-06-0110619110.3390/sym10060191sym10060191Reflection Negative Kernels and Fractional Brownian MotionPalle E. T. Jorgensen0Karl-Hermann Neeb1Gestur Ólafsson2Department of Mathematics, The University of Iowa, Iowa City, IA 52242, USADepartment Mathematik, FAU Erlangen–Nürnberg, Cauerstrasse 11, 91058-Erlangen, GermanyDepartment of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USAIn this article we study the connection of fractional Brownian motion, representation theory and reflection positivity in quantum physics. We introduce and study reflection positivity for affine isometric actions of a Lie group on a Hilbert space E and show in particular that fractional Brownian motion for Hurst index 0 < H ≤ 1 / 2 is reflection positive and leads via reflection positivity to an infinite dimensional Hilbert space if 0 < H < 1 / 2 . We also study projective invariance of fractional Brownian motion and relate this to the complementary series representations of GL 2 ( R ) . We relate this to a measure preserving action on a Gaussian L 2 -Hilbert space L 2 ( E ) .http://www.mdpi.com/2073-8994/10/6/191fractional brownian motionreflection positivityreflection negative kernelsrepresentations of S L 2 ( R )
collection DOAJ
language English
format Article
sources DOAJ
author Palle E. T. Jorgensen
Karl-Hermann Neeb
Gestur Ólafsson
spellingShingle Palle E. T. Jorgensen
Karl-Hermann Neeb
Gestur Ólafsson
Reflection Negative Kernels and Fractional Brownian Motion
Symmetry
fractional brownian motion
reflection positivity
reflection negative kernels
representations of S L 2 ( R )
author_facet Palle E. T. Jorgensen
Karl-Hermann Neeb
Gestur Ólafsson
author_sort Palle E. T. Jorgensen
title Reflection Negative Kernels and Fractional Brownian Motion
title_short Reflection Negative Kernels and Fractional Brownian Motion
title_full Reflection Negative Kernels and Fractional Brownian Motion
title_fullStr Reflection Negative Kernels and Fractional Brownian Motion
title_full_unstemmed Reflection Negative Kernels and Fractional Brownian Motion
title_sort reflection negative kernels and fractional brownian motion
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2018-06-01
description In this article we study the connection of fractional Brownian motion, representation theory and reflection positivity in quantum physics. We introduce and study reflection positivity for affine isometric actions of a Lie group on a Hilbert space E and show in particular that fractional Brownian motion for Hurst index 0 < H ≤ 1 / 2 is reflection positive and leads via reflection positivity to an infinite dimensional Hilbert space if 0 < H < 1 / 2 . We also study projective invariance of fractional Brownian motion and relate this to the complementary series representations of GL 2 ( R ) . We relate this to a measure preserving action on a Gaussian L 2 -Hilbert space L 2 ( E ) .
topic fractional brownian motion
reflection positivity
reflection negative kernels
representations of S L 2 ( R )
url http://www.mdpi.com/2073-8994/10/6/191
work_keys_str_mv AT palleetjorgensen reflectionnegativekernelsandfractionalbrownianmotion
AT karlhermannneeb reflectionnegativekernelsandfractionalbrownianmotion
AT gesturolafsson reflectionnegativekernelsandfractionalbrownianmotion
_version_ 1725343883606360064