Heat Treatment Effect on Microstructure Evolution in a 7% Cr Steel for Forging

Well-defined heat-treatment guidelines are required to achieve the target mechanical properties in high-chromium steels for forgings. Moreover, for this class of materials, the microstructure evolution during heat treatment is not clearly understood. Thus, it is particularly important to assess the...

Full description

Bibliographic Details
Main Authors: Andrea Di Schino, Matteo Gaggiotti, Claudio Testani
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/10/6/808
Description
Summary:Well-defined heat-treatment guidelines are required to achieve the target mechanical properties in high-chromium steels for forgings. Moreover, for this class of materials, the microstructure evolution during heat treatment is not clearly understood. Thus, it is particularly important to assess the steel microstructure evolution during heat treatment, in order to promote the best microstructure. This will ascertain the safe use for long-term service. In this paper, different heat treatments are considered, and their effect on a 7% Cr steel for forging is reported. Results show that, following the high intrinsic steel hardenability, significative differences were not found versus the cooling-step treatment, although prior austenite grain size was significantly different. Moreover, retained austenite (RA) content is lower in double-tempered specimens after heat treatments at higher temperatures.
ISSN:2075-4701