Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearities
In this paper, we are concerned with the multiplicity of nontrivial radial solutions for the following elliptic equation \begin{equation*} \begin{cases} - \Delta u +V(x)u = -\lambda Q(x)|u|^{q-2}u+ Q(x)f(u),\quad x\in\mathbb{R}^N,\\ u(x)\rightarrow 0,\quad \hbox{as}\ |x|\rightarrow +\infty,\end...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2015-10-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3558 |
id |
doaj-1c4176b96a9c446abc250a035d5fbbc4 |
---|---|
record_format |
Article |
spelling |
doaj-1c4176b96a9c446abc250a035d5fbbc42021-07-14T07:21:27ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752015-10-0120156111710.14232/ejqtde.2015.1.613558Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearitiesAnran Li0Chongqing Wei1Shanxi University, Taiyuan, ChinaShanxi University, Taiyuan, ChinaIn this paper, we are concerned with the multiplicity of nontrivial radial solutions for the following elliptic equation \begin{equation*} \begin{cases} - \Delta u +V(x)u = -\lambda Q(x)|u|^{q-2}u+ Q(x)f(u),\quad x\in\mathbb{R}^N,\\ u(x)\rightarrow 0,\quad \hbox{as}\ |x|\rightarrow +\infty,\end{cases} \tag*{(P)$_\lambda$} \end{equation*} where $1<q<2,\ \lambda\in \mathbb{R}^+,\ N\geq 3$, $V$ and $Q$ are radial positive functions, which can be vanishing or coercive at infinity, $f$ is asymptotically linear or superlinear at infinity.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3558weighted sobolev embeddingsublinearasymptotically linearsuperlinearcritical point theoryvariation methods |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Anran Li Chongqing Wei |
spellingShingle |
Anran Li Chongqing Wei Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearities Electronic Journal of Qualitative Theory of Differential Equations weighted sobolev embedding sublinear asymptotically linear superlinear critical point theory variation methods |
author_facet |
Anran Li Chongqing Wei |
author_sort |
Anran Li |
title |
Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearities |
title_short |
Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearities |
title_full |
Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearities |
title_fullStr |
Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearities |
title_full_unstemmed |
Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearities |
title_sort |
multiple solutions to elliptic equations on $\mathbb{r}^n$ with combined nonlinearities |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2015-10-01 |
description |
In this paper, we are concerned with the
multiplicity of nontrivial radial solutions for the following elliptic equation
\begin{equation*}
\begin{cases} - \Delta u +V(x)u = -\lambda Q(x)|u|^{q-2}u+ Q(x)f(u),\quad x\in\mathbb{R}^N,\\
u(x)\rightarrow 0,\quad \hbox{as}\ |x|\rightarrow +\infty,\end{cases}
\tag*{(P)$_\lambda$}
\end{equation*}
where $1<q<2,\ \lambda\in \mathbb{R}^+,\ N\geq 3$, $V$ and $Q$ are radial positive functions, which can be vanishing or coercive at infinity, $f$ is asymptotically linear or superlinear at infinity. |
topic |
weighted sobolev embedding sublinear asymptotically linear superlinear critical point theory variation methods |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3558 |
work_keys_str_mv |
AT anranli multiplesolutionstoellipticequationsonmathbbrnwithcombinednonlinearities AT chongqingwei multiplesolutionstoellipticequationsonmathbbrnwithcombinednonlinearities |
_version_ |
1721303562492837888 |