Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearities

In this paper, we are concerned with the multiplicity of nontrivial radial solutions for the following elliptic equation \begin{equation*} \begin{cases} - \Delta u +V(x)u = -\lambda Q(x)|u|^{q-2}u+ Q(x)f(u),\quad x\in\mathbb{R}^N,\\ u(x)\rightarrow 0,\quad \hbox{as}\ |x|\rightarrow +\infty,\end...

Full description

Bibliographic Details
Main Authors: Anran Li, Chongqing Wei
Format: Article
Language:English
Published: University of Szeged 2015-10-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3558
id doaj-1c4176b96a9c446abc250a035d5fbbc4
record_format Article
spelling doaj-1c4176b96a9c446abc250a035d5fbbc42021-07-14T07:21:27ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752015-10-0120156111710.14232/ejqtde.2015.1.613558Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearitiesAnran Li0Chongqing Wei1Shanxi University, Taiyuan, ChinaShanxi University, Taiyuan, ChinaIn this paper, we are concerned with the multiplicity of nontrivial radial solutions for the following elliptic equation \begin{equation*} \begin{cases} - \Delta u +V(x)u = -\lambda Q(x)|u|^{q-2}u+ Q(x)f(u),\quad x\in\mathbb{R}^N,\\ u(x)\rightarrow 0,\quad \hbox{as}\ |x|\rightarrow +\infty,\end{cases} \tag*{(P)$_\lambda$} \end{equation*} where $1<q<2,\ \lambda\in \mathbb{R}^+,\ N\geq 3$, $V$ and $Q$ are radial positive functions, which can be vanishing or coercive at infinity, $f$ is asymptotically linear or superlinear at infinity.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3558weighted sobolev embeddingsublinearasymptotically linearsuperlinearcritical point theoryvariation methods
collection DOAJ
language English
format Article
sources DOAJ
author Anran Li
Chongqing Wei
spellingShingle Anran Li
Chongqing Wei
Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearities
Electronic Journal of Qualitative Theory of Differential Equations
weighted sobolev embedding
sublinear
asymptotically linear
superlinear
critical point theory
variation methods
author_facet Anran Li
Chongqing Wei
author_sort Anran Li
title Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearities
title_short Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearities
title_full Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearities
title_fullStr Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearities
title_full_unstemmed Multiple solutions to elliptic equations on $\mathbb{R}^N$ with combined nonlinearities
title_sort multiple solutions to elliptic equations on $\mathbb{r}^n$ with combined nonlinearities
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2015-10-01
description In this paper, we are concerned with the multiplicity of nontrivial radial solutions for the following elliptic equation \begin{equation*} \begin{cases} - \Delta u +V(x)u = -\lambda Q(x)|u|^{q-2}u+ Q(x)f(u),\quad x\in\mathbb{R}^N,\\ u(x)\rightarrow 0,\quad \hbox{as}\ |x|\rightarrow +\infty,\end{cases} \tag*{(P)$_\lambda$} \end{equation*} where $1<q<2,\ \lambda\in \mathbb{R}^+,\ N\geq 3$, $V$ and $Q$ are radial positive functions, which can be vanishing or coercive at infinity, $f$ is asymptotically linear or superlinear at infinity.
topic weighted sobolev embedding
sublinear
asymptotically linear
superlinear
critical point theory
variation methods
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3558
work_keys_str_mv AT anranli multiplesolutionstoellipticequationsonmathbbrnwithcombinednonlinearities
AT chongqingwei multiplesolutionstoellipticequationsonmathbbrnwithcombinednonlinearities
_version_ 1721303562492837888