The metric dimension of circulant graphs and their Cartesian products

Let \(G=(V,E)\) be a connected graph (or hypergraph) and let \(d(x,y)\) denote the distance between vertices \(x,y\in V(G)\). A subset \(W\subseteq V(G)\) is called a resolving set for \(G\) if for every pair of distinct vertices \(x,y\in V(G)\), there is \(w\in W\) such that \(d(x,w)\neq d(y,w)\)....

Full description

Bibliographic Details
Main Authors: Kevin Chau, Shonda Gosselin
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2017-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol37/4/art/opuscula_math_3726.pdf

Similar Items