Microscopic optoelectronic defectoscopy of solar cells

Scanning probe microscopes are powerful tool for micro- or nanoscale diagnostics of defects in crystalline silicon solar cells. Solar cell is a large p-n junction semiconductor device. Its quality is strongly damaged by the presence of defects. If the cell works under low reverse-biased voltage,...

Full description

Bibliographic Details
Main Authors: Dallaeva D., Koktavý P., Tománek P., Škarvada P.
Format: Article
Language:English
Published: EDP Sciences 2013-05-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/20134800026
Description
Summary:Scanning probe microscopes are powerful tool for micro- or nanoscale diagnostics of defects in crystalline silicon solar cells. Solar cell is a large p-n junction semiconductor device. Its quality is strongly damaged by the presence of defects. If the cell works under low reverse-biased voltage, defects emit a light in visible range. The suggested method combines three different measurements: electric noise measurement, local topography and near-field optical beam induced current and thus provides more complex information. To prove its feasibility, we have selected one defect (truncated pyramid) in the sample, which emitted light under low reverse-biased voltage.
ISSN:2100-014X