Polyketide Synthases in the Microbiome of the Marine Sponge Plakortis halichondrioides: A Metagenomic Update

Sponge-associated microorganisms are able to assemble the complex machinery for the production of secondary metabolites such as polyketides, the most important class of marine natural products from a drug discovery perspective. A comprehensive overview of polyketide biosynthetic genes of the sponge...

Full description

Bibliographic Details
Main Authors: Gerardo Della Sala, Thomas Hochmuth, Roberta Teta, Valeria Costantino, Alfonso Mangoni
Format: Article
Language:English
Published: MDPI AG 2014-11-01
Series:Marine Drugs
Subjects:
PKS
Online Access:http://www.mdpi.com/1660-3397/12/11/5425
Description
Summary:Sponge-associated microorganisms are able to assemble the complex machinery for the production of secondary metabolites such as polyketides, the most important class of marine natural products from a drug discovery perspective. A comprehensive overview of polyketide biosynthetic genes of the sponge Plakortis halichondrioides and its symbionts was obtained in the present study by massively parallel 454 pyrosequencing of complex and heterogeneous PCR (Polymerase Chain Reaction) products amplified from the metagenomic DNA of a specimen of P. halichondrioides collected in the Caribbean Sea. This was accompanied by a survey of the bacterial diversity within the sponge. In line with previous studies, sequences belonging to supA and swfA, two widespread sponge-specific groups of polyketide synthase (PKS) genes were dominant. While they have been previously reported as belonging to Poribacteria (a novel bacterial phylum found exclusively in sponges), re-examination of current genomic sequencing data showed supA and swfA not to be present in the poribacterial genome. Several non-supA, non-swfA type-I PKS fragments were also identified. A significant portion of these fragments resembled type-I PKSs from protists, suggesting that bacteria may not be the only source of polyketides from P. halichondrioides, and that protistan PKSs should receive further investigation as a source of novel polyketides.
ISSN:1660-3397