Preparation and Characterization of Mn/N Co-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber and Its Visible Light Photodegradation

Using MnSO4·H2O as manganese source and urea as nitrogen source, Mn/N co-doped TiO2 loaded on wood-based activated carbon fiber (Mn/Ti-N-WACF) was prepared by sol–gel method. Mn/Ti-N-WACF with different Mn doping contents was characterized by scanning electron microscopy, X-ray diffraction (XRD) and...

Full description

Bibliographic Details
Main Authors: Xiaojun Ma, Yin Chen
Format: Article
Language:English
Published: MDPI AG 2015-09-01
Series:Polymers
Subjects:
Online Access:http://www.mdpi.com/2073-4360/7/9/1476
Description
Summary:Using MnSO4·H2O as manganese source and urea as nitrogen source, Mn/N co-doped TiO2 loaded on wood-based activated carbon fiber (Mn/Ti-N-WACF) was prepared by sol–gel method. Mn/Ti-N-WACF with different Mn doping contents was characterized by scanning electron microscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopies (XPS), and ultraviolet-visible spectrophotometer. Results showed that the loading rate of TiO2 in Mn/Ti-N-WACF was improved by Mn/N co-doping. After calcination at 450 °C, the degree of crystallinity of TiO2 was reduced due to Mn/N co-doption in the resulting Mn/Ti-N-WACF samples, but the TiO2 crystal phase was not changed. XPS spectra revealed that some Ti4+ ions from the TiO2 lattice of Mn/Ti-N-WACF system were substituted by doped Mn. Moreover, new bonds formed within N–Ti–N and Ti–N–O because of the doped N that substituted some oxygen atoms in the TiO2 lattice. Notably, the degradation rate of methylene blue for Mn/Ti-N-WACF was improved because of the co-doped Mn/N under visible-light irradiation.
ISSN:2073-4360