On the Performance of an Aerosol Electrometer with Enhanced Detection Limit

An aerosol electrometer with enhanced detection limit was developed for measuring the collected particles electrical current ranging from −50 pA to 50 pA with no range switching necessary. The detection limit was enhanced by suppressing the electric current measurement noise and improving...

Full description

Bibliographic Details
Main Authors: Yixin Yang, Tongzhu Yu, Jiaoshi Zhang, Jian Wang, Wenyu Wang, Huaqiao Gui, Jianguo Liu
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/18/11/3889
Description
Summary:An aerosol electrometer with enhanced detection limit was developed for measuring the collected particles electrical current ranging from &#8722;50 pA to 50 pA with no range switching necessary. The detection limit was enhanced by suppressing the electric current measurement noise and improving the detection efficiency. A theoretical model for the aerosol electrometer has been established to investigate the noise effect factors and verified experimentally. The model showed that the noise was a function of ambient temperature, and it was affected by the characteristics of feedback resistor and operational amplifier simultaneously. The Faraday cup structure of the aerosol electrometer was optimized by adopting a newly designed cup-shaped metal filter which increased the surface area of the cup; thus the particle interception efficiency was improved. The aerosol electrometer performance-linearity, noise and the particle detection efficiency, were evaluated experimentally. When compared with TSI-3068B, a 99.4% (<inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>) statistical correlation was achieved. The results also showed that the root mean square noise and the peak-to-peak noise were 0.31 fA and 1.55 fA, respectively. The particle detection efficiency was greater than 99.3% when measuring particle diameter larger than 7.0 nm.
ISSN:1424-8220