Energy Efficiency Optimization and Dynamic Mode Selection Algorithms for D2D Communication Under HetNet in Downlink Reuse

Device-to-Device communication (D2D) is a promising technique for improving fifth-generation cellular network (5G) spectrum and energy efficiency. However, limited user power and co-channel interference make designing an energy efficient D2D communication a difficult task. In this paper, a novel fra...

Full description

Bibliographic Details
Main Authors: Amal Ali Algedir, Hazem H. Refai
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9097174/
Description
Summary:Device-to-Device communication (D2D) is a promising technique for improving fifth-generation cellular network (5G) spectrum and energy efficiency. However, limited user power and co-channel interference make designing an energy efficient D2D communication a difficult task. In this paper, a novel framework is proposed to optimize the energy efficiency of D2D communication coexisting with a heterogeneous network (HetNet) in downlink transmission. This optimization problem is mathematically formulated in terms of mode selection, power control, and resources allocation (i.e., NP-hard problem). The optimization fraction problem is simplified based on network load and is solved using different optimization methods. An innovative dynamic mode selection based on Fuzzy clustering is introduced. Proposed scheme performance is evaluated and compared to the standard algorithm. Simulation demonstrated the advantage of the proposed framework in terms of gain performance in both energy efficiency and number of successfully connected D2D users. Moreover, D2D communication improves energy efficiency of the heterogeneous network of Downlink transmission.
ISSN:2169-3536