A multimodal data-set of a unidirectional glass fibre reinforced polymer composite

A unidirectional (UD) glass fibre reinforced polymer (GFRP) composite was scanned at varying resolutions in the micro-scale with several imaging modalities. All six scans capture the same region of the sample, containing well-aligned fibres inside a UD load-carrying bundle. Two scans of the cross-se...

Full description

Bibliographic Details
Main Authors: Monica J. Emerson, Vedrana A. Dahl, Knut Conradsen, Lars P. Mikkelsen, Anders B. Dahl
Format: Article
Language:English
Published: Elsevier 2018-06-01
Series:Data in Brief
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340918303901
Description
Summary:A unidirectional (UD) glass fibre reinforced polymer (GFRP) composite was scanned at varying resolutions in the micro-scale with several imaging modalities. All six scans capture the same region of the sample, containing well-aligned fibres inside a UD load-carrying bundle. Two scans of the cross-sectional surface of the bundle were acquired at a high resolution, by means of scanning electron microscopy (SEM) and optical microscopy (OM), and four volumetric scans were acquired through X-ray computed tomography (CT) at different resolutions. Individual fibres can be resolved from these scans to investigate the micro-structure of the UD bundle. The data is hosted at https://doi.org/10.5281/zenodo.1195879 and it was used in Emerson et al. (2018) [1] to demonstrate that precise and representative characterisations of fibre geometry are possible with relatively low X-ray CT resolutions if the analysis method is robust to image quality. Keywords: Geometrical characterisation, Polymer-matrix composites (PMCs), Volumetric fibre segmentation, Automated fibre tracking, X-ray imaging, Microscopy, Non-destructive testing
ISSN:2352-3409