Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method
The high degree of uncertainty and conflicting literature data on the value of the permeability coefficient (also known as the mushy zone constant), which aims to dampen fluid velocities in the mushy zone and suppress them in solid regions, is a critical drawback when using the fixed-grid enthalpy-p...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-11-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/12/22/4360 |
id |
doaj-1ba36d1dbf3b46308d813dfe40b2d428 |
---|---|
record_format |
Article |
spelling |
doaj-1ba36d1dbf3b46308d813dfe40b2d4282020-11-25T01:58:53ZengMDPI AGEnergies1996-10732019-11-011222436010.3390/en12224360en12224360Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity MethodAmin Ebrahimi0Chris R. Kleijn1Ian M. Richardson2Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The NetherlandsDepartment of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The NetherlandsDepartment of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The NetherlandsThe high degree of uncertainty and conflicting literature data on the value of the permeability coefficient (also known as the mushy zone constant), which aims to dampen fluid velocities in the mushy zone and suppress them in solid regions, is a critical drawback when using the fixed-grid enthalpy-porosity technique for modelling non-isothermal phase-change processes. In the present study, the sensitivity of numerical predictions to the value of this coefficient was scrutinised. Using finite-volume based numerical simulations of isothermal and non-isothermal melting and solidification problems, the causes of increased sensitivity were identified. It was found that depending on the mushy-zone thickness and the velocity field, the solid−liquid interface morphology and the rate of phase-change are sensitive to the permeability coefficient. It is demonstrated that numerical predictions of an isothermal phase-change problem are independent of the permeability coefficient for sufficiently fine meshes. It is also shown that sensitivity to the choice of permeability coefficient can be assessed by means of an appropriately defined Péclet number.https://www.mdpi.com/1996-1073/12/22/4360meltingsolidificationmushy zonepermeability coefficiententhalpy-porosity method |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Amin Ebrahimi Chris R. Kleijn Ian M. Richardson |
spellingShingle |
Amin Ebrahimi Chris R. Kleijn Ian M. Richardson Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method Energies melting solidification mushy zone permeability coefficient enthalpy-porosity method |
author_facet |
Amin Ebrahimi Chris R. Kleijn Ian M. Richardson |
author_sort |
Amin Ebrahimi |
title |
Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method |
title_short |
Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method |
title_full |
Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method |
title_fullStr |
Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method |
title_full_unstemmed |
Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method |
title_sort |
sensitivity of numerical predictions to the permeability coefficient in simulations of melting and solidification using the enthalpy-porosity method |
publisher |
MDPI AG |
series |
Energies |
issn |
1996-1073 |
publishDate |
2019-11-01 |
description |
The high degree of uncertainty and conflicting literature data on the value of the permeability coefficient (also known as the mushy zone constant), which aims to dampen fluid velocities in the mushy zone and suppress them in solid regions, is a critical drawback when using the fixed-grid enthalpy-porosity technique for modelling non-isothermal phase-change processes. In the present study, the sensitivity of numerical predictions to the value of this coefficient was scrutinised. Using finite-volume based numerical simulations of isothermal and non-isothermal melting and solidification problems, the causes of increased sensitivity were identified. It was found that depending on the mushy-zone thickness and the velocity field, the solid−liquid interface morphology and the rate of phase-change are sensitive to the permeability coefficient. It is demonstrated that numerical predictions of an isothermal phase-change problem are independent of the permeability coefficient for sufficiently fine meshes. It is also shown that sensitivity to the choice of permeability coefficient can be assessed by means of an appropriately defined Péclet number. |
topic |
melting solidification mushy zone permeability coefficient enthalpy-porosity method |
url |
https://www.mdpi.com/1996-1073/12/22/4360 |
work_keys_str_mv |
AT aminebrahimi sensitivityofnumericalpredictionstothepermeabilitycoefficientinsimulationsofmeltingandsolidificationusingtheenthalpyporositymethod AT chrisrkleijn sensitivityofnumericalpredictionstothepermeabilitycoefficientinsimulationsofmeltingandsolidificationusingtheenthalpyporositymethod AT ianmrichardson sensitivityofnumericalpredictionstothepermeabilitycoefficientinsimulationsofmeltingandsolidificationusingtheenthalpyporositymethod |
_version_ |
1724967423654756352 |