Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması
Objective: The aim of this study is to classify the magnetoencephalography (MEG) signals with artificial neural network to solve brain activity. Methods: The Generalized Regression Neural Network (GRNN) was used to classify MEG signals. The features of the signals were extracted by the Riemannian a...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Dicle University Medical School
2019-03-01
|
Series: | Dicle Medical Journal |
Subjects: | |
Online Access: | http://diclemedj.org/upload/sayi/72/Dicle%20Med%20J-03563.pdf |
id |
doaj-1b9eb2a426e846408fb37c8294fdec48 |
---|---|
record_format |
Article |
spelling |
doaj-1b9eb2a426e846408fb37c8294fdec482020-11-25T01:26:54ZengDicle University Medical SchoolDicle Medical Journal 1300-29451308-98892019-03-01461192510.5798/dicletip.534819Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile SınıflandırılmasıOnursal Çetin0Feyzullah Temurtaş1 Bandırma Onyedi Eylül Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektronik ve Haberleşme Müh. Böl., 10200, Bandırma, Balıkesir, Türkiye ORCID: 0000-0001-5220-3959Bandırma Onyedi Eylül Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektronik ve Haberleşme Müh. Böl., 10200, Bandırma, Balıkesir, Türkiye ORCID: 0000-0002-3158-4032Objective: The aim of this study is to classify the magnetoencephalography (MEG) signals with artificial neural network to solve brain activity. Methods: The Generalized Regression Neural Network (GRNN) was used to classify MEG signals. The features of the signals were extracted by the Riemannian approach and the accuracy of the GRNN was calculated by the 10-fold cross validation technique. Results: In the study, MEG data recorded from 306 channels belonging to 7 male subjects and 9 female subjects were used. Approximately 588 stimuli were shown to each individual, so the entire data set is composed of 9414 stimuli. Mean specificity, mean sensitivity and mean classification accuracy were obtained 75.43%, 82.57% and 79%, respectively. The classification accuracies obtained by this study and other studies for same MEG dataset were presented comparatively. Conclusion: GRNN is thought to be a successful alternative to existing methods for classifying MEG signals.http://diclemedj.org/upload/sayi/72/Dicle%20Med%20J-03563.pdfMagnetoencephalographyGeneralized regression neural networkClassification |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Onursal Çetin Feyzullah Temurtaş |
spellingShingle |
Onursal Çetin Feyzullah Temurtaş Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması Dicle Medical Journal Magnetoencephalography Generalized regression neural network Classification |
author_facet |
Onursal Çetin Feyzullah Temurtaş |
author_sort |
Onursal Çetin |
title |
Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması |
title_short |
Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması |
title_full |
Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması |
title_fullStr |
Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması |
title_full_unstemmed |
Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması |
title_sort |
görsel uyaranlara i̇lişkin manyetoensefalografi sinyallerinin genelleştirilmiş regresyon sinir ağı ile sınıflandırılması |
publisher |
Dicle University Medical School |
series |
Dicle Medical Journal |
issn |
1300-2945 1308-9889 |
publishDate |
2019-03-01 |
description |
Objective: The aim of this study is to classify the magnetoencephalography (MEG) signals with artificial neural network to solve brain activity.
Methods: The Generalized Regression Neural Network (GRNN) was used to classify MEG signals. The features of the signals were extracted by the Riemannian approach and the accuracy of the GRNN was calculated by the 10-fold cross validation technique.
Results: In the study, MEG data recorded from 306 channels belonging to 7 male subjects and 9 female subjects were used. Approximately 588 stimuli were shown to each individual, so the entire data set is composed of 9414 stimuli. Mean specificity, mean sensitivity and mean classification accuracy were obtained 75.43%, 82.57% and 79%, respectively. The classification accuracies obtained by this study and other studies for same MEG dataset were presented comparatively.
Conclusion: GRNN is thought to be a successful alternative to existing methods for classifying MEG signals. |
topic |
Magnetoencephalography Generalized regression neural network Classification |
url |
http://diclemedj.org/upload/sayi/72/Dicle%20Med%20J-03563.pdf |
work_keys_str_mv |
AT onursalcetin gorseluyaranlarailiskinmanyetoensefalografisinyalleriningenellestirilmisregresyonsiniragıilesınıflandırılması AT feyzullahtemurtas gorseluyaranlarailiskinmanyetoensefalografisinyalleriningenellestirilmisregresyonsiniragıilesınıflandırılması |
_version_ |
1725108238303625216 |