Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması

Objective: The aim of this study is to classify the magnetoencephalography (MEG) signals with artificial neural network to solve brain activity. Methods: The Generalized Regression Neural Network (GRNN) was used to classify MEG signals. The features of the signals were extracted by the Riemannian a...

Full description

Bibliographic Details
Main Authors: Onursal Çetin, Feyzullah Temurtaş
Format: Article
Language:English
Published: Dicle University Medical School 2019-03-01
Series:Dicle Medical Journal
Subjects:
Online Access:http://diclemedj.org/upload/sayi/72/Dicle%20Med%20J-03563.pdf
id doaj-1b9eb2a426e846408fb37c8294fdec48
record_format Article
spelling doaj-1b9eb2a426e846408fb37c8294fdec482020-11-25T01:26:54ZengDicle University Medical SchoolDicle Medical Journal 1300-29451308-98892019-03-01461192510.5798/dicletip.534819Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile SınıflandırılmasıOnursal Çetin0Feyzullah Temurtaş1 Bandırma Onyedi Eylül Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektronik ve Haberleşme Müh. Böl., 10200, Bandırma, Balıkesir, Türkiye ORCID: 0000-0001-5220-3959Bandırma Onyedi Eylül Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektronik ve Haberleşme Müh. Böl., 10200, Bandırma, Balıkesir, Türkiye ORCID: 0000-0002-3158-4032Objective: The aim of this study is to classify the magnetoencephalography (MEG) signals with artificial neural network to solve brain activity. Methods: The Generalized Regression Neural Network (GRNN) was used to classify MEG signals. The features of the signals were extracted by the Riemannian approach and the accuracy of the GRNN was calculated by the 10-fold cross validation technique. Results: In the study, MEG data recorded from 306 channels belonging to 7 male subjects and 9 female subjects were used. Approximately 588 stimuli were shown to each individual, so the entire data set is composed of 9414 stimuli. Mean specificity, mean sensitivity and mean classification accuracy were obtained 75.43%, 82.57% and 79%, respectively. The classification accuracies obtained by this study and other studies for same MEG dataset were presented comparatively. Conclusion: GRNN is thought to be a successful alternative to existing methods for classifying MEG signals.http://diclemedj.org/upload/sayi/72/Dicle%20Med%20J-03563.pdfMagnetoencephalographyGeneralized regression neural networkClassification
collection DOAJ
language English
format Article
sources DOAJ
author Onursal Çetin
Feyzullah Temurtaş
spellingShingle Onursal Çetin
Feyzullah Temurtaş
Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması
Dicle Medical Journal
Magnetoencephalography
Generalized regression neural network
Classification
author_facet Onursal Çetin
Feyzullah Temurtaş
author_sort Onursal Çetin
title Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması
title_short Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması
title_full Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması
title_fullStr Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması
title_full_unstemmed Görsel Uyaranlara İlişkin Manyetoensefalografi Sinyallerinin Genelleştirilmiş Regresyon Sinir Ağı ile Sınıflandırılması
title_sort görsel uyaranlara i̇lişkin manyetoensefalografi sinyallerinin genelleştirilmiş regresyon sinir ağı ile sınıflandırılması
publisher Dicle University Medical School
series Dicle Medical Journal
issn 1300-2945
1308-9889
publishDate 2019-03-01
description Objective: The aim of this study is to classify the magnetoencephalography (MEG) signals with artificial neural network to solve brain activity. Methods: The Generalized Regression Neural Network (GRNN) was used to classify MEG signals. The features of the signals were extracted by the Riemannian approach and the accuracy of the GRNN was calculated by the 10-fold cross validation technique. Results: In the study, MEG data recorded from 306 channels belonging to 7 male subjects and 9 female subjects were used. Approximately 588 stimuli were shown to each individual, so the entire data set is composed of 9414 stimuli. Mean specificity, mean sensitivity and mean classification accuracy were obtained 75.43%, 82.57% and 79%, respectively. The classification accuracies obtained by this study and other studies for same MEG dataset were presented comparatively. Conclusion: GRNN is thought to be a successful alternative to existing methods for classifying MEG signals.
topic Magnetoencephalography
Generalized regression neural network
Classification
url http://diclemedj.org/upload/sayi/72/Dicle%20Med%20J-03563.pdf
work_keys_str_mv AT onursalcetin gorseluyaranlarailiskinmanyetoensefalografisinyalleriningenellestirilmisregresyonsiniragıilesınıflandırılması
AT feyzullahtemurtas gorseluyaranlarailiskinmanyetoensefalografisinyalleriningenellestirilmisregresyonsiniragıilesınıflandırılması
_version_ 1725108238303625216