Summary: | The design and optimization of novel structures is an essential part of the next-generation solar cells development. Indeed, the technological steps involved in the development of high-performance solar cells involve a huge set of interdependent physical and geometrical parameters: layers thicknesses, dopings, compositions, and defect characteristics. In this work, we propose a new open-source and free solar cell optimizer: SLALOM − for SoLAr ceLl multivariate OptiMizer − that implements a rigorous multivariate approach, which improves from the one-parameter-at-a-time procedure that is traditionally used in the field to a state-of-the-art multivariate approach. Applied to indium gallium nitride (InGaN) solar cells, it shows its potential to become a useful tool for the development of novel solar cells. SLALOM is implemented to be extended to any semiconductor simulation engine. Several models for solar cells have been implemented in SLALOM, including, for instance, InGaN. One can adapt these models to any solar cell technology by changing the parameter set, the here proposed generic code structure remaining unchanged.
|