HAPPY OR SCARED – DETECTING EMOTIONS OF PEDELEC DRIVERS IN URBAN AREAS
With rising population, cities face new challenges. A key challenge for city administrators is to address the overall well-being of its citizens. This includes both physical and emotional health. Towards this objective, cities around the world are heavily investing in green mobility with support for...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-09-01
|
Series: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W9/27/2019/isprs-annals-IV-4-W9-27-2019.pdf |
Summary: | With rising population, cities face new challenges. A key challenge for city administrators is to address the overall well-being of its citizens. This includes both physical and emotional health. Towards this objective, cities around the world are heavily investing in green mobility with support for sustainable modes (e.g. public transport, cycling, walking) as an alternative to individual motorized transport using combustion engine. However, very little attention is paid towards identifying the effect of green mobility on the emotional states of citizens. Several studies show a link between an upbeat emotional state and physical signs of good health. Furthermore, as urban centres expand it is imperative to find a balanced combination of physical and emotional health during last mile urban commute. In this paper, we try to find a feasible method for urban emotion detection in the age of last mile green mobility. Our approach relies on Machine Learning (ML) techniques to predict emotions with real-time data. |
---|---|
ISSN: | 2194-9042 2194-9050 |